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Abstract 
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for 
mesh generation and other applications.  This functionality includes that commonly found in solid 
modeling engines, like geometry creation, query and modification; CGM also includes capabilities not 
commonly found in solid modeling engines, like geometry decomposition tools and support for shared 
material interfaces.  CGM is built upon the ACIS solid modeling engine, but also includes geometry 
capability developed beside and on top of ACIS.  CGM can be used as-is to provide geometry functionality 
for codes needing this capability.  However, CGM can also be extended using derived classes in C++, 
allowing the geometric model to serve as the basis for other applications, for example mesh generation.  
CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms.  CGM also 
includes support for loading ACIS models on parallel computers, using MPI-based communication.  Future 
plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks.  
CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available 
to ACIS licensees on request. 
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1 Introduction 
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for 
mesh generation and other applications.  This functionality includes that commonly found in solid 
modeling engines, like geometry creation, query and modification; CGM also includes capabilities not 
commonly found in solid modeling engines, like geometry decomposition tools and support for shared 
material interfaces.  CGM is built upon the ACIS solid modeling engine, but also includes geometry 
capability developed beside and on top of ACIS.  CGM can be used as-is to provide geometry functionality 
for codes needing this capability.  However, CGM can also be extended using derived classes in C++, 
allowing the geometric model to serve as the basis for other applications, for example mesh generation.  
CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms.  CGM also 
includes support for loading ACIS models on parallel computers, using MPI-based communication.  Future 
plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks.  
CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available 
to ACIS licensees on request. 

This document is organized as follows.  Section 2 describes the geometric model used in CGM, commonly 
referred to as a BREP model.  Section 3 is a User’s Guide, describing how CGM can be used as-is to 
support geometry functions without the addition of application-specific geometry capability.  Section 4, the 
CGM Developer’s Guide, describes the design of CGM in more detail, and how CGM capabilities can be 
extended using derived classes in C++.  Section 5 gives details of CGM usage that are specific to the 
CUBIT Mesh Generation Toolkit; this section also serves as a useful example of how to extend CGM data 
structures for specific purposes.  Appendix A describes licensing requirements for CGM, and for the ACIS-
based parts of CGM.  Appendix B contains source code listings for the C++ and C driver applications, 
including makefiles for building these applications. 

This document is intended to serve as both an introduction to CGM as well as a reference.  For those 
wanting a quick introduction to using CGM in its various modes, see Sections 3.6, 3.8 and 0; these sections 
describe CGM driver applications and do not require reading of this manual to understand the basic 
concepts. 

2 Geometry Model 
The basic geometry representation used in CGM is that of a Boundary Representation, or BREP.  While 
this is a commonly used representation, the nomenclature used to describe it can vary greatly.  Therefore, 
this section first introduces the basic elements of topology, and more importantly the terminology used to 
describe those elements in the rest of this document.  In addition to topology, there are other important 
elements of the geometric model used in CGM that are important to understand; these elements are 
introduced in sections 2.2-2.4. 

CGM is meant to serve as an interface to geometric models in a variety of formats, some of them solid 
model-based, some of them not.  A discussion of the current and future support for various geometry 
representations is discussed in section 2.5. 

2.1 Topology 
The basic topological entities used in CGM, along with their dimensions, are shown in Table 1.  Note that 
in the case of Edges and Faces, the most common nomenclature can be confusing in a finite element 
context, since there are also “edge” and “face” element types.  In cases where the type of edge or face is 
unclear from the context, the terms “geometric” and “mesh” are used to qualify the term as pertaining to 
geometry or mesh, respectively. 

In addition to the basic topological entities, there are a number of other geometric entities which can be 
used to describe the geometric model.  These entities are typically not necessary for the complete geometric 
description of a BREP model, but they are useful constructs nonetheless.  These entities are described in 
Table 2. 



Table 1  “Basic” topological entities in the CGM geometric model. 

Basic 
Topological 

Entity 

Dimension 

Vertex 0 
Edge 1 
Face 2 

Volume 3 
 

Table 2  Other geometric entities used in CGM geometric model. 

 Entity Description 
Body One or more volumes, share a transform and participate 

together in geometry transforms and booleans. 
Shell Group of CoFaces describing a closed or open shell; if 

closed, describes a boundary of a volume.  Can be inner 
or outer boundary. 

Grouping 
Entities 

Loop Group of CoEdges describing a boundary of a face.  Can 
be inner or outer boundary. 

CoFace Entity describing the orientation of a face as used in a 
shell, with respect to the face’s normal. 

Sense 
Entities 

CoEdge Entity describing the orientation of an edge as used in a 
loop, with respect to the edge’s tangent direction. 

 
In a typical application, a geometric model consists of one or more volumes, each volume bounded by one 
or more faces, with each face bounded by one or more edges and vertices.  The entities in a BREP model 
are related to each other in a geometric hierarchy, which can be represented using a graph.  In general, an 
entity of dimension d is bounded by one or more entities of dimension d-1, 0 < d ≤ 3. 

There are several exceptions to the typical geometric model described above that are allowed in CGM 
models.  First, CGM (and ACIS) allows curves to be bounded by a single vertex; these are called periodic 
curves, in reference to the periodic nature of the curve’s parameter space.  Likewise, periodic surfaces are 
also allowed; these are surfaces whose parameter space contains jump discontinuities, for example a 
cylindrical surface.  Periodic entities can complicate applications like mesh generation; therefore, CGM can 
optionally split these entities into non-periodic entities. 

In rare cases, geometry exists where an entity of dimension d is not strictly bounded by an entity of 
dimension d-1.  The best example of this is a cone, where the apex is represented topologically by a vertex.  
Although there is no apparent curve corresponding to this vertex, CGM models this using a zero-length 
curve.  Applications not desiring this behavior can request that the periodic entities in a body be split into 
non-periodic ones. 

Geometry can be envisioned whereby a single basic topological entity bounds a higher order entity twice; 
an example would be a torus with a circular face contained twice in the bounding shell, or a “scratch” curve 
included twice on a surface.  While these cases can be represented using judicious application of CoFaces 
or CoEdges, they are not typically found in real-world geometries.  Cases involving surfaces included twice 
by a single shell are not strictly supported in CGM; however, edges can occur twice in a given loop, and 
these types of edges can occur with others on a loop (e.g. a re-entrant edge bounding a surface), or by 
themselves (e.g. a “scratch line” on a surface). 

2.2 Non-manifold modeling 
Non-manifold geometry is a general term describing models of mixed dimension, e.g. models containing 
volumes and dangling faces or edges.  In the context of CGM, the term “non-manifold geometry” is used to 
indicate the presence of entities of dimension d-1 shared by more than one entity of dimension d.  In 



particular, “non-manifold” is often used in the context of CGM to describe groups of volumes which share 
faces in between them. 

CGM represents shared edges and faces by actually representing a single edge or face, along with sense 
entities (CoEdge and CoFace, respectively) to describe the orientation of the entity with respect to the 
higher-dimension entity.  For example, an edge can be part of two adjacent faces.  The edge has a “natural” 
orientation, such that vertex V1 is the “start” of the edge and V2 is the “end”.  Then, the two faces sharing 
that edge use the edge with opposite “sense”; face F1 uses the edge with “forward” sense, that is with a 
sense corresponding to the edge’s natural direction, while face F2 uses the edge with “reverse” sense.  
Likewise, in the case where two volumes share a common face, one volume uses the face with a forward 
sense while the other uses the face with a reverse sense.  Note that multiple faces can share a given edge in 
a non-manifold model.  However, in typical geometries, at most two volumes will share a given face, each 
with an opposite sense.  If the senses are the same, overlapping geometry is usually indicated. 

2.3 Groups 
The grouping entities listed in Table 2 are specific to the kinds of geometry they contain; for example, 
bodies consist only of one or more volumes.  In contrast, geometry groups are used in CGM to store one or 
more geometry entities of arbitrary type, including other groups.  The entities stored in a given group 
typically have no implied relation to each other, and are grouped only for convenience, either for the user 
or for a specific application.  For example, users may want to create a group of all entities falling on one 
side of a coordinate plane.  Groups are used extensively in the CUBIT application of CGM, and in some 
cases inside CGM itself. 

2.4 Attributes 
Attributes are defined as information which can be associated with a particular geometric entity, but which 
are not intrinsic to the representation of that entity.  For example, the name of a geometric entity, while not 
required to represent an entity, is associated directly to that entity.  CGM provides functions for storing 
application-specific attributes directly on geometry entities, and functions for managing that data when 
geometry is stored to disk. 

2.5 Geometric Representations Supported 
CGM supports a variety of geometric representations; how it supports each also varies, between serving as 
an interface to some other code library and implementing that representation inside CGM. 

Solid model geometry usually originates from a CAD system, for example SolidWorks or Pro/Engineer.  
There are also several commercially-available code libraries able to evaluate such geometry in its native 
format.  CGM provides its best support for solid model-based geometry in the ACIS format [1]; this format 
can be exported directly from SolidWorks and other modelers, or can be translated into from various 
formats.  Using components provided with the ACIS modeling engine, CGM can also import geometry in 
the IGES and STEP formats, though this mechanism of geometry transfer should be avoided if possible. 

CGM provides facet-based geometric modeling, where a faceted shell can provide the description of the 
outer boundary(ies) of a solid.  This mechanism is useful for representing scanned data like biological 
models, and for representing deformed models resulting from analysis.  Faceted surfaces can be modeled as 
piecewise-planar surfaces, or can be used to compute a Bezier-type smoothed surface.  The techniques used 
to compute this surface are described further in Ref. [2]. 

Another very powerful geometry modeling technique is that of “virtual geometry” [5].  In this modeling 
technique, the model topology can be modified while retaining the original geometric shape.  For example, 
virtual geometry can be used to combine small topological surfaces together into a larger logical surface.  
This capability is used to support a variety of higher-level tools in the CUBIT mesh generation toolkit [1], 
including detail removal and mesh skew control.  Virtual geometry works on any of the other supported 
formats in CGM. 



Future plans include developing direct interfaces to other solid model-based formats.  An interface has 
already been developed for the SolidWorks CAD system [3], though there are performance issues and this 
is a query-only interface.  Several implementations of interfaces to Pro/Engineer’s Granite interface have 
also been developed [4], but have more restricted distribution policies.  Finally, there are other modelers for 
which the CGM team would like interfaces but do not have the time to develop.  Since CGM is distributed 
under an open-source model (see Appendix A), there is a mechanism in place for sharing CGM source code 
for institutions desiring to collaborate on such an undertaking. 

For more details about supported geometry formats in CGM, please contact Tim Tautges, 
tjtautg@sandia.gov.  

3 User’s Guide 

3.1 Introduction 
CGM encapsulates most of the geometry functionality required by the CUBIT Mesh Generation Toolkit; 
this includes interfaces to the ACIS solid modeling engine, but also incorporates non-manifold geometry, 
virtual geometry and other functions not found in ACIS or other solid modeling engines.   CGM provides 
all the functions necessary to restore geometry to the state used to generate a CUBIT mesh; if geometry 
attributes are used to store the geometry after meshing in CUBIT, the geometric model can be restored in 
its final state with a few simple API calls.  CGM can also be used to construct geometry from primitives or 
from fields of points, and evaluate this geometry for application-specific needs. 

This User’s Guide describes the use of CGM as-is to restore or create, and evaluate geometry.  For 
information on extending the functionality of CGM, for example to store mesh directly on geometry, see 
the Developer’s Guide in the following chapter.  After describing the primary components in CGM and 
some implementation details, this chapter concludes with three example driver applications.  Users looking 
for a quick-start guide to CGM should refer to these applications. 

3.2 Module components 
There are multiple components in CGM, distinguished by the functionality they implement and the 
interface used to access that functionality.  The components fall under the general categories of tools, 
topology and geometry; these components are described in more detail in this section. 

3.2.1 Geometry Tools and Engines 
The primary interface to CGM is through its tools, and in particular through the GeometryQueryTool and 
GeometryModifyTool classes.  GeometryQueryTool and GeometryModifyTool are implemented as 
singleton classes (see section 3.7), which implies that their functions can be viewed as API functions rather 
than functions associated with a geometry entity.  GeometryQueryTool implements functions necessary for 
importing and exporting geometry files, and for querying the geometry, for example for surface normals 
and tangents, body volume, and closest point to an entity.  GeometryQueryTool  

is also the point of access for global lists of geometric entities.  GeometryModifyTool provides functions 
for modifying geometry in various ways, including booleans, healing, and various types of decomposition.  
Separating geometry into query-only functions in GeometryQueryTool and non-query functions in 
GeometryModifyTool allows applications to link in only the needed functionality; this tends to reduce 
executable file sizes and improves modularity.  

While the geometry tools provide a single interface to geometry capability, the actual representations are 
done using geometry engines.  For example, AcisQueryEngine and AcisModifyEngine provide the 
functions needed to create, query and modify ACIS-based geometry.  VirtualGeometryEngine and 
FacetQueryEngine/FacetModifyEngine provide virtual and facet-based representations, respectively. 



Other tools in CGM, most of them also implemented as singleton classes, perform functions in specific 
areas, for example MergeTool, which changes manifold to non-manifold geometry, and FeatureTool, for 
performing automatic decomposition. 

3.2.2 Topology 
There are various topology traversal functions that are accessible from any of the CGM topological entities; 
these functions give all the topological entities of a given type connected to an entity, e.g. all the vertices in 
a volume, or all the bodies containing an edge.  Most topology traversal functions are called as member 
functions of an entity object. 

3.2.3 Geometry 
Functions which are used to evaluate the geometric representation of an entity are called as member 
functions of that entity.  For example, there are member functions for an edge which move a given 
coordinate position to the closest point on that edge, or which return the length of the edge. 

3.3 Tools and Engines Component 
The primary access point to geometric capability in CGM is through GeometryQueryTool and 
GeometryModifyTool, each of which has one or more underlying engines.  Other tools provide 
functionality which creates or modifies geometry.  For example, MergeTool detects coincident entities and 
combines them to form non-manifold geometry.  The most commonly used tools are described in more 
detail in this section. 

3.3.1 Geometry Engine Initialization 
CGM requires the calling application to create geometry engines of the types required for the application.  
This allows the selection of geometry engine to happen at application compile time, and allows applications 
to all use the same set of CGM libraries regardless of the engines used in each application.  Geometry 
engines can be created before or after CGM itself is initialized (this is described in Section 3.7.1).  Three of 
the most common combinations are: 

• Query-only, ACIS-based In this case, an AcisQueryEngine object is created by calling its instance 
function in the application: 

 
AcisQueryEngine *aqe = AcisQueryEngine::instance();  

Inside the constructor of AcisQueryEngine, the created engine is passed to the GeometryQueryTool 
singleton instance (which gets instantiated during this process, if one has not yet been created). 

• Modify, ACIS-based 
In this case, the application requires functionality to create and/or modify geometry.  This is 
accomplished by creating an AcisModifyEngine instance: 

AcisModifyEngine *ame = AcisModifyEngine::instance( ); 
During this process, an AcisQueryEngine will be created, if it does not yet exist, and both will be 
passed to their respective geometry tools (GeometryModifyTool and GeometryQueryTool, 
respectively).  Note that there is dependence from AcisModifyEngine on AcisQueryEngine, but not 
vica versa; this allows the creation of an AcisQueryEngine without creating an AcisModifyEngine, 
which saves space in the application executable. 

• Query-only, facet-based 
In certain cases, applications need to construct and query facet-based geometry, for example for 
remeshing deforming models.  In this case, a FacetQueryEngine must be created: 

FacetQueryEngine *fge = FacetQueryEngine::instance( )(); 
Note that this does not require the use of ACIS, which results in substantial savings in executable size. 



In all cases, no re-compilation of GeometryQueryTool or GeometryModifyTool is required to support these 
various functionalities.  This simplifies the maintenance of CGM and supports its use in many different 
contexts. 

After the initialization of one type of engine (query-only or non-query, ACIS-based or facet-based), other 
engines can be created, and will be added to the corresponding tools as required.  That way, an application 
can start functioning in a query-only mode and move to a non-query mode if/when necessary.   

3.3.2 Geometry Query Operations: GeometryQueryTool 
Once the appropriate query engine(s) are instantiated, all geometry queries should be done through 
GeometryQueryTool or the specific topology classes.  This ensures that the query will be made to the 
appropriate engine (ACIS, facet, etc.), and also allows the implementation of engine-independent code once 
rather than in every engine.  Some of the common types of query functionality are described below.  In all 
cases, functions in GeometryQueryTool are accessed through a singleton instance: 

GeometryQueryTool::instance()->import_solid_model(… ) 

3.3.2.1 Geometry import/export 
The most common method for defining geometry with CGM is to import it from an ACIS .sat file.   These 
files can be used to save geometry directly from CGM, and can also be written directly from several CAD 
tools including SolidWorks and Pro/Engineer.  The functions used to import and export geometry are listed 
in Table 3.  Only the required arguments are listed; each of the functions defines several optional 
arguments, which can be used for example to define a log file to which any informational messages are 
written. 

Table 3  GeometryModifyTool functions for importing and exporting geometry from/to a disk file. 

Function Purpose 
GeometryQueryTool::import_solid_model Import a solid model file of a specified type 

(ACIS_SAT, ACIS_SAB, etc.) 
GeometryQueryTool::export_solid_model Export entities to a file of a specified type. 
 

3.3.2.2 Global entity lists 
After geometry is imported into CGM, it is maintained in global lists accessible through 
GeometryQueryTool.  Individual basic topological entities are identified primarily using integer ids, but 
can also be identified using names (which are either defined by the application or can be assigned to default 
values).  Id numbers are unique within a given entity type, while names are unique across all entities (this 
behavior can be modified, but this is discouraged). 

In addition to retrieving individual entities, there are functions in GeometryQueryTool which give access to 
the global entity lists.  There are functions which directly access and step through lists, and functions which 
pass back copies of the global lists for use in the application code.  The functions used to access geometry 
are summarized in Table 4. 

Table 4: GeometryQueryTool functions for accessing global entity lists. 

Function Description 
GeometryQueryTool::cubit_entity_list Append entities of the specified type to a 

DLCubitEntityList 
GeometryQueryTool::ref_entity_list Append entities of the specified type to a 

DLRefEntityList 
GeometryQueryTool::bodies 
GeometryQueryTool::ref_xxx 
(xxx = volumes, faces, edges, 
vertices, groups, parts, assemblies, 

Append all bodies in the model to a DLBodyList 
Similar for ref_xxx 



coordsys) 
GeometryQueryTool::get_ref_entity Return an entity of a given type and id 
GeometryQueryTool::get_body 
GeometryQueryTool::get_ref_xxx 
(xxx = volumes, faces, edges, 
vertices, groups, parts, assemblies, 
coordsys) 

Return a body of a given id 
Similar for get_ref_xxx 

GeometryQueryTool::num_bodies 
GeometryQueryTool::num_xxx 
(xxx = volumes, faces, edges, 
vertices, groups, parts, assemblies, 
coordsys) 

Return the number of bodies in the global list 
Similar for num_ref_xxx 

GeometryQueryTool::get_first_body 
GeometryQueryTool::get_first_ref_xxx 
(xxx = volumes, faces, edges, 
vertices, groups, parts, assemblies, 
coordsys) 
GeometryQueryTool::get_next_body 
GeometryQueryTool::get_next_ref_xxx 
GeometryQueryTool::get_last_body 
GeometryQueryTool::get_last_ref_xxx 
 

Return the first body in the global list, positioning the 
list at the beginning; similar for get_first_ref_xxx.  For 
get_next_xxx, step the list and return that item.  For 
get_last_xxx, get the last item in the list and position 
the list at the end. 

3.3.2.3 Geometric Queries 
The primary purpose of having geometric capability in an application is to provide geometric information 
about a model, including geometric extent (length, area, etc.), geometric location (closest point), and other 
data (surface normals, tangents).  Most of the geometric query functions in CGM are accessed through the 
individual entities like curves, surfaces and volumes.  Selected functions are listed in Table 5. 

Table 5: Geometric query functions accessed through individual entities. 

RefEntity::measure() Generic geometric extent function, returns the 
length/area/volume of the edge/face/volume and 1.0 
for vertices. 

RefEdge::position_from_u(…) Forward-evaluate a curve based on a u coordinate. 
RefFace::normal_at(…) Return the face normal at a given point. 
RefFace::move_to_surface(…) Move a point to the closest point on the 

(untrimmed) surface 
RefVolume::point_containment(…) Returns whether a given point is inside, outside, or 

on the boundary of a volume 

3.3.3 Geometry Modify Operations: GeometryModifyTool 
Geometry modification functions are separated into another tool, GeometryModifyTool.  This tool interacts 
closely with GeometryQueryTool, but is separate to allow use of GeometryQueryTool alone.  Functions in 
GeometryModifyTool are accessed through a singleton instance: 

CubitStatus status = GeometryModifyTool::instance() ->intersect(…) 

3.3.3.1 Geometry Primitives 
Geometry is often created using a well-known primitive, e.g. bricks, cylinders and spheres. The geometry 
primitive functions provided in GeometryModifyTool are listed in Table 6 (see the class header files for 
complete descriptions). 

Table 6  Geometry primitives and functions in GeometryModifyTool. 

Function Description 
GeometryModifyTool::brick Brick with dimensions specified in x, y and z. 



GeometryModifyTool::cylinder Cylinder of specified height and radius; can create elliptic 
cylinder or conic using minor radius and top radius, respectively. 

GeometryModifyTool::sphere Sphere with specified radius. 
GeometryModifyTool::prism N-sided prism with specified height (N >= 3). 
GeometryModifyTool::torus Torus with major and minor radii specified. 
GeometryModifyTool::pyramid Same as prism. 
 

3.3.3.2 Geometry Creation 
In addition to primitives, geometry can be created by creating vertices, then edges, then faces, etc.  These 
functions are summarized in Table 7. 

Table 7  GeometryModifyTool functions for geometry creation. 

Function Description 
GeometryModifyTool::make_RefVertex Make a vertex from a point. 
GeometryModifyTool::make_RefEdge Make an edge from two vertices, optionally on 

a face, along a list of segments, as an 
ellipse/parabola/logarithmic spiral 

GeometryModifyTool::make_RefFace Make a face from a list of bounding edges, as 
a plane/sphere/cone/spline/best fit surface. 

GeometryModifyTool::create_body_from_surfs Make a volume from a list of bounding faces. 
GeometryModifyTool::make_Body Make a body from a list of volumes. 
 
In addition, bodies can be created by sweeping 2-dimensional faces into the third dimension.  Since this is a 
common solid modeling operation, CGM provides several functions of this type; these functions are 
summarized in Table 8.  Complete syntax and descriptions of these functions are located in the class header 
files. 

Table 8  GeometryModifyTool functions which sweep a face into a 3-dimensional solid. 

Function Description 
GeometryModifyTool::sweep_translational Sweep a face into a volume by translation. 
GeometryModifyTool::sweep_rotational Sweep a face into a volume by rotation. 
GeometryModifyTool::sweep_along_curve Sweep a face into a volume by following a 

specified curve. 
 

3.3.3.3 Transformations 
Transformation functions typically take a body and transform its geometry, for example by scaling, 
rotation, or reflection.  Since they involve local changes to the body geometry, transformation functions are 
called primarily using the Body pointers.  The exception to this rule is the reflect function, which is called 
using GeometryModifyTool and which yields a new Body.  Transformation functions available on Body 
and GeometryModifyTool are listed in Table 9.  Since some of these functions are accessible through the 
Body class, they can be used even in a query-only setting; in this case, no extra cost is incurred in the size 
of executables due to this capability. 

Table 9  Transformation functions in the Body and GeometryModifyTool classes. 

Function Description 
GeometryQueryTool::reflect Reflect a body across a given plane. 
GeometryQueryTool::translate Move a body by a given dx, dy and dz. 
GeometryQueryTool::scale Scale a body by a given factor. 
GeometryQueryTool::rotate Rotate a body about a given axis, vector or curve. 
GeometryQueryTool::restore_transform Restore a body to the state before the previous 



transformation. 
 

3.3.3.4 Booleans 
Booleans are set operations on two or more bodies, which yield two, one or no bodies as a result, 
depending on the type of and success of the operation. Boolean functions, as implemented in 
GeometryModifyTool, also return a status value, which should be checked after the functions are called.  
Boolean functions provided by GeometryModifyTool are summarized in Table 10.  This list is not 
exhaustive, but contains the most commonly used boolean functions; a complete list can be found in the 
class header files. 

Unite, subtract and intersect are similar to the corresponding set operations, and require no further 
explanation.  Imprint operations, as the name implies, imprints topology from one body onto adjacent 
bodies; by definition, the imprinted topology is not geometrically significant, i.e. it does not change the 
volume of a body.  Imprinting is done to ensure that adjacent surfaces share identical topology, which 
enables them to be merged together.  Regularize is the opposite of imprint; this function removes topology 
from a body which is not geometrically significant. 

Table 10  Boolean functions in GeometryModifyTool. 

Function Description 
GeometryModifyTool::unite Unite the given body or bodies into a single body. 
GeometryModifyTool::subtract  Subtract one or more bodies from a given body. 
GeometryModifyTool::intersect Intersect one or more bodies from a given body, or 

intersect pairwise. 
GeometryModifyTool::imprint  Imprint two or more bodies together. 
GeometryModifyTool::regularize_body Regularize one or more bodies (opposite of imprint). 
 

3.3.3.5 Geometry Decomposition Functions 
Geometry decomposition is an important part of a hexahedral meshing application, and must be supported 
well by a geometry module.  CGM provides many functions for decomposing geometry.  Typically, a 
cutting surface is specified using an existing surface, a surface extending from an existing surface, or a 
semi-infinite surface like a coordinate plane or cylindrical surface; or, sometimes an entire body is used as 
a cutting tool.  The cutting tool or surface along with the body or bodies to be cut are passed to a specific 
webcut function, which returns the results of the cutting operation.  GeometryModifyTool functions 
supporting geometry decomposition are summarized in Table 11. 

Table 11: Functions supporting geometry decomposition. 

Function Description 
GeometryModifyTool::webcut_with_xxx 
(xxx = plane, sheet, vertices, 
cylinder, surface, extended_surface, 
body) 

Decompose one or more bodies with a given geometry 
entity or implicitly-defined geometric entity.  Keeps all 
bodies resulting from decomposition. 

GeometryModifyTool::section Decompose one or more bodies with a planar surface or 
coordinate axis.  Keeps bodies on one side of the 
surface only. 

GeometryModifyTool::split_body Changes multi-volume body into several single-volume 
bodies. 

GeometryModifyTool::split_periodic Splits periodic surfaces on one or more bodies into 
multiple surfaces. 



3.3.4 MergeTool 
Non-manifold geometry, in the context of CGM, simply means geometry containing vertices, edges and 
faces which can be shared by more than one volume or by multiple free faces or edges.  Solid models are 
created and imported as manifold models; a merge operation must be performed on a model to convert it to 
a non-manifold representation.  The merge operation simply searches for geometry entities of like topology 
and geometry (within a specified tolerance), and merges any it finds.  Merging is an important part of 
applications built on CGM, and care should be taken to merge models requiring contiguous regions before 
interacting with those models. 

Typically, geometry coming straight from a CAD system will require some cleaning up before it will merge 
correctly (i.e. before the only surfaces remaining in a multi-material model are surfaces on the “outside” of 
the part).  Geometry can be cleaned up by importing it into CUBIT or another application and performing 
the necessary geometry manipulations.  At a minimum, all bodies should be imprinted on one another to 
guarantee that entities which are coincident in space also have like topology.  While this is most often done 
in another application before saving the final geometry, it might also be necessary to imprint the bodies in 
the CGM application. 

Functions which control merging are summarized in Table 12. 

Table 12: MergeTool functions which control merging of manifold into non-manifold geometry. 

Function Description 
MergeTool::merge_all_bodies 
MergeTool::merge_all_refxxx 
(xxx = vertices, edges, faces) 

Performs merge check on all entities of the specified 
type. 

MergeTool::merge_bodies 
MergeTool::merge_entities 
MergeTool::merge_refxxx 
(xxx = vertices, edges, faces, 
volumes) 

Perform merge check on entities passed in as arguments. 

MergeTool::contains_merged_entities Returns CUBIT_TRUE if one or more bodies passed in 
contains merged child entities. 

MergeTool::entity_merged Returns CUBIT_TRUE if the entity passed in is merged. 
MergeTool::merge_has_occurred Returns CUBIT_TRUE if a merge has occurred 

anywhere in the model. 
  

3.3.5 VirtualGeometryEngine 
When a solid model is imported or created based on the ACIS geometry engine, each entity in the ACIS 
model has a corresponding entity in the CUBIT model.  For example, each FACE in the ACIS model will 
have a corresponding RefFace in CUBIT.  Sometimes, it is desirable to change the CUBIT model without 
modifying the underlying ACIS model; VirtualGeometryEngine provides this capability. 

VirtualGeometryEngine provides functions for combining or splitting edges, faces and volumes.  After 
these operations, the CUBIT model reflects the new geometry, while the ACIS model remains unchanged.  
This capability can be used, for example, to combine many very small surfaces into a larger topological 
surface. 

Table 13 summarizes the functions for creating, removing, and performing other interactions with virtual 
geometry. 

Table 13: VirtualGeometryEngine functions for creating, removing and otherwise interacting with 
virtual geometry. 

Function Description 
PartitionTool::partition Partition the given entity using explicit or implicit geometry 

(implicit geometry is geometry whose geometric data are 
specfied by the user; explicit geometry is a geometry entity 



already extant in the model) 
PartitionTool::unpartition Remove the partition on one or more entities; removes only 

one partition. 
PartitionTool::unpartitionAll Remove all partitions on one or more entities, passing back 

the list of restored entities. 
CompositeTool::composite Composite the given list of entities into a single entity. 
CompositeTool::uncomposite Remove composite, passing back list of restored entities. 
CompositeTool::isComposite Returns CUBIT_TRUE if the entity passed in is a composite 

entity. 
CompositeTool::okayToComposite Returns CUBIT_TRUE if the entities passed in can be 

composited together. 
 

3.4 Geometry Component 

3.4.1 Geometric representation: TopologyBridge 
Before any merging operations, the geometric topology in CGM corresponds exactly to that of the solid 
model.  In the CGM datastructure, each solid model entity has a corresponding TopologyBridge object, 
which is unique to that solid model entity. Each RefEntity points to a single TopologyBridge (through a 
BridgeManager object, the purpose of which is explained later).  Thus, before merging, there is a one-to-
one correspondence between each RefEntity and its corresponding solid model entity. 

The TopologyBridge object for a RefEntity is really the geometric representation of that entity.  All 
geometric queries to a RefEntity (e.g. the length of an edge, or the distance between a point and the closest 
point on a face) are passed directly to the TopologyBridge object, which forwards the request to the solid 
model entity.  In this way, the solid modeling engine is used for geometric queries, rather than duplicating 
any data and code necessary to implement those queries in CGM.  The public interface to geometric queries 
is implemented in the RefEntity objects instead of through TopologyBridge in order to reduce the number 
of objects applications have to keep track of. 

3.4.2 Alternative geometric representations 
CGM has been designed to allow alternative representations of geometry; indeed, this capability is being 
developed actively in the virtual and facet-based geometry components.  Alternative geometric 
representations can be used simply by providing code underneath TopologyBridge that provides the 
evaluation functions required by the corresponding RefEntity.  See the VirtualCurve class for an example 
of such an alternate representation.  This design also simplifies the process of substituting another solid 
modeling engine for ACIS; a PROE-based implementation of CGM is being developed which utilizes these 
design features, and other implementations are being considered. 

3.5 Topology Component 
Geometric models consist of topological entities like vertices, edges and faces, related to one another 
through a topology graph.  Each entity of dimension d is bounded by one or more entities of dimension d-1, 
and, most of the time, bounds one or more entities of dimension d+1.  One of the most common operations 
while querying geometry is to traverse this topology graph, finding entities of dimension m related to one 
or more entities of dimension n.  CGM provides many functions for topology traversal. 

Most topology traversal functions are called as member functions from the entity from which the traversal 
starts; the functions are implemented in TopologyEntity.  One exception to this is the get_related_entity 
functions, which take as input a list of entities and return a list of  related entities of a specified type.  In all 
cases, if a function is called to return all entities of the same type as the entity from which the function was 
called, that entity is returned in the list. 

The topology traversal functions are summarized in Table 14. 



Table 14: Topology traversal functions implemented in TopologyEntity. 

Function Description 
TopologyEntity::bodies 
TopologyEntity::ref_xxx 
(xxx=volumes, faces, edges, vertices) 
TopologyEntity::shells 
TopologyEntity::loops 
TopologyEntity::co_faces 
TopologyEntity::co_edges 

Return list of bodies related to the entity from which 
the function was called.  
Similar for ref_xxx functions. 
Similar for shells, loops, co_faces, co_edges 
functions. 

 
 
For example, the following call is used to find all the vertices connected to volume pointer vol1 and store 
them in list vertex_list: 

CubitStatus return_status = vol1->ref_vertices(vert ex_list); 
Sometimes, it is desirable to gather the topological entities of the next higher or lower dimension, without 
determining what the specific type of those entities is.  For example, for most of the meshing algorithms in 
CUBIT, before meshing an entity of dimension d, all the bounding entities of dimension d-1 must already 
be meshed.  Topology traversal functions which return parent and child entities without requiring the parent 
or child entity type as input are used for this purpose and are defined in RefEntity. 

The notion of a parent or child entity of dimension d+1 or d-1 only makes sense for our basic topology 
types vertex, edge, face, volume and body.  Since we do not require a target entity type as input, these 
traversal functions either give immediate parent or child entities, or they give a list of all parent or child 
entities. 

The topology traversal functions defined in RefEntity are summarized in Table 15.  Like the traversal 
functions in TopologyEntity, these functions are called as member functions from a RefEntity object. 

Table 15: Parent and child topology traversal functions defined in RefEntity. 

Function Description 
RefEntity::get_child_ref_entities Return a list of all immediate children of the 

RefEntity. 
RefEntity::get_parent_ref_entities Return a list of all immediate parents of the 

RefEntity. 
RefEntity::get_all_child_ref_entities 
RefEntity::get_all_parent_ref_entities 

Return a list of all children, traversing down to 
dimension d=0 (i.e. vertices); similar for parents, but 
traversing up to dimension d=4 (i.e. bodies). 

RefEntity::get_child_ref_entity_type 
RefEntity::get_parent_ref_entity_type 

Return the EntityType of the the immediate child 
RefEntity’s.  Similar for get_parent_entity_type. 

RefEntity::is_child 
RefEntity::is_parent 

Return CUBIT_TRUE if the input entity is a 
child/parent (immediate or not) of the RefEntity 

 
There are additional topology traversal functions defined in BasicTopologyEntity, SenseEntity and 
GroupingEntity; these functions generally provide traversals to the next higher or lower type of 
TopologyEntity, and are not as commonly used as the traversal functions in TopologyEntity and RefEntity.  
Descriptions of these functions are located in the automatic documentation for those classes. 

3.5.1 Non-manifold modeling: BridgeManager 
 
CGM accomplishes non-manifold modeling not by merging actual solid model entities, but by having a 
single RefEntity correspond to multiple solid model entities.  Merging takes entities with like topology and 
geometry (within a geometric tolerance), and combines them into a single entity.  The changes to the 
datastructure resulting from this operation can be described with a simple example, merging two edges 
together.  First, the two RefEdges are compared, and the one with the lowest id is designated the “keeper”; 
the other RefEdge is designated the “dead” entity.  The TopologyBridge object for the dead entity is added 



to the list of TopologyBridge objects on the keeper’s BridgeManager.  Then, the topology graph is changed 
such that all parents of the dead entity point to the keeper entity instead.  The sense entity immediately 
above is changed to incorporate the correct sense (this process is explained in more detail below).  Finally, 
the dead entity, along with its TopologyBridge object, are deleted.  We are left with the keeper RefEdge 
and its BridgeManager object, which maintains a list of two TopologyBridge objects.  The process for 
merging more than two entities together is similar, but now there are more than two TopologyBridge 
objects in list in BridgeManager. 

There are a few subtle things to note about the datastructure for non-manifold topology.  First, we assume 
that lower order topology has already been merged (this is checked in MergeTool and accomplished during 
the merging process); after fixing the topology graph for the parents of the dead entity, the topology graph 
can be traversed as before.  After merging takes place, from the CGM model point of view, there is a single 
shared entity.  Any data assigned the shared entity, either by CGM (e.g. names, ids) or in an application 
(e.g. mesh), applies to both the underlying solid model objects. 

The sense entities immediately above the objects being merged may or may not be changed, depending on 
the type of entity and it’s actual geometry.  Consider first merging two edges together (see ).  Edge 1 is part 
of loop 1, which uses the edge with a “forward” sense, and similarly for edge 2 in loop 2.  When edges 1 
and 2 are merged together, edge 2 goes away and loop 2 now uses edge 1.  Note though that loop 2 now 
uses edge 1 with a “reverse” sense; this is stored in the datastructure by modifying coedge 2, which 
maintains the connection between the loop and the edge.  Consider next merging three edges together (see 
).  Loops 2 and 3 now use edge 1; however, only coedge 2 must have its sense changed; the sense of coedge 
3 is unchanged.   

Merging faces is very similar.  However, it is rare that two faces are merged together and the corresponding 
cofaces both maintain the same sense; this would correspond to two volumes occupying the same physical 
space, which is usally not done.  Therefore, MergeTool prints a warning when merging two faces like this. 

The code which checks and changes coedge and coface senses if necessary is located in MergeTool. 

3.6 Building Applications 
The previous sections in this User’s Guide describe in more detail the design and use of the geometry 
datastructure in CGM.  In this section, the steps necessary to build applications which use CGM are 
described. 

3.6.1 Overall directory structure 
CGM and its components are arranged in a directory structure designed to minimize unnecessary 
dependencies between components.  This directory structure is depicted in Table 16.  In order to compile 
applications using CGM, both directories, as well as any subdirectories, must be available at compile time.  
The purpose of the code in each subdirectory is also described in Table 16. 

Table 16: CGM directory structure  and purpose of code in each subdirectory. 

Directory Purpose Depends on: 
$(CUBIT_BASE_DIR)/util Utility functions for other code in CGM (none) 
$(CUBIT_BASE_DIR)/util/OtherFiles Configuration files for compiling CGM on 

various platforms 
(none) 

$(CUBIT_BASE_DIR)/geom Core CGM datastructure and tool classes. util, list, virtual, 
facet 

$(CUBIT_BASE_DIR)/geom/ACIS CGM interface to ACIS (available to ACIS 
licensees; see Appendix A). 

geom, util, list, 
ACIS package  

$(CUBIT_BASE_DIR)/geom/virtual Virtual geometry component (datastructure 
and tools). 

geom, util, list 

$(CUBIT_BASE_DIR)/geom/facet Facet geometry component (datastructure 
and tools). 

geom, util, list 

 



3.6.2 Compiling applications 
A sample application is given in the following section; the makefile associated with this driver application 
should be used as a reference for developing new applications based on CGM.  Parts of this makefile can 
be inserted into the makefile of existing applications that want to begin using CGM.  This section gives 
some additional notes on compiling applications based on CGM. 

As noted in Table 16, some of the code in CGM depends on the ACIS solid modeling engine; however, it is 
not necessary to link CGM applications with ACIS if ACIS-based geometry will not be used. 

3.7 Implementation Notes 
Included in this section are notes about the general implementation of CGM that should be known to 
applications developers. 

3.7.1 Initializing CGM 
CGM is initialized by calling the function: 

CGMApp::instance()->startup(argc, argv); 

Before or after initializing CGM, geometry engines required by the application should be created using the 
procedure described in Section 3.3.1.  Separating the creation of geometry engines from basic CGM 
initialization allows the use of the same common CGM libraries with different combinations of engines. 

3.7.2 Singleton tools 
Most tools accessed through the public interface of CGM are implemented as singleton classes.  This well-
known design pattern is used for implementing functionality that is of a global nature, without requiring the 
functions themselves to be global (see [1] for a detailed description of the singleton and other design 
patterns).  Singleton classes typically have constructors that are private, which prevent the creation of new 
singleton objects by classes other than the singleton class itself.  Singleton class objects are accessed using 
an instance function: 

MyTool *tool = MyTool::instance(); 

This function is static, so it does not require an object of type MyTool before it is called.  Inside the 
instance function, a singleton object of type MyTool is created if it does not already exist, and a static 
pointer to this tool is maintained in the class.  This pointer is then returned to the calling application. 

Singleton classes are also used to accomplish extensibility of CGM.  CGM classes and tools call singleton 
instances to accomplish things like create geometry and geometry attributes.  Applications can substitute 
their own implementations of these singleton tools, which in effect allows the application-specific code to 
be called from CGM without CGM being dependent on the applications.  This requires some careful 
initialization of CGM from applications which extend its capabilities.  This process is described in more 
detail in the following chapter. 

3.7.3 Creation/modification through GeometryModifyTool 
As stated earlier, all geometry creation and modification is accomplished by calling functions in 
GeometryModifyTool.  Although very few of these functions are actually implemented in 
GeometryModifyTool, this class provides a focal point for calling geometry functions, reducing the size of 
the CGM interface applications developers need to understand before using the package.  In general, 
developers should look for needed functionality first in GeometryModifyTool. 

3.7.4 Geometric and Topological Queries 
Certain functions are clearly object-oriented functions which are associated directly with geometry objects.  
Examples include functions which return the length of an edge, the vertices connected to a volume, or the 
closest point to a given surface.  Object-oriented functionality like this is usually implemented in the 



RefEntity leaf classes (RefVertex, RefEdge, etc.), or in their parent classes (BasicTopologyEntity or 
RefEntity).  These implementations either pass the request on to another class for actual implementation, or 
the functions are defined and implemented in one of the parent classes.  In general, functions implemented 
on RefEntity objects are query-only; functions that modify geometry are typically implemented in tools like 
GeometryModifyTool or MergeTool. 

3.7.5 Geometry Attributes 
Functions which implement geometry attribute capabilities can be called directly from RefEntity objects; 
these functions are actually implemented in CubitAttribUser, a parent class of RefEntity.  By default, only 
entity name attributes are saved and restored automatically.  To enable automatic storing and retrieval of 
geometry attributes, set a parameter using the function call: 

CGMApp::instance()->attrib_manager()->auto_flag(CUB IT_TRUE); 
This function sets options for all the attribute types such that they are written and read automatically. 

The geometry attributes capability can be used to store application-specific information on geometric 
entities.  The mechanism used to implement application-specific attributes is described in the next chapter. 

3.8 C++ Driver Application 
In this section, a simple CGM driver application is described.  This application, called mergechk, imports 
one or more geometry files, computes any overlaps between the bodies, imprints the bodies, then merges 
geometry into non-manifold geometry.  Although very straightforward, this application demonstrates how 
to import geometry, perform boolean operations on it, then further query the geometry.  The source code 
for this application is shown in Table 17 - Table 21.  Some declarations and comments in the driver code 
have been removed for brevity; the complete mergechk application is distributed with the CGM libraries, in 
the cgm_apps/examples/driverc++ subdirectory. 

Each of the code sections in mergechk is described below. 

3.8.1 Forward declarations and main 
 
The source code for forward declarations and the main function are shown in Table 17.  This file begins 
with the inclusion of files containing declarations of functions and datastructures.  In most CGM 
applications, GeometryQueryTool.hpp and/or GeometryModifyTool.hpp will be included, since these are 
the primary points of access to CGM.  In the main function, the first few lines of code initialize first CGM 
(by calling CGMApp::instance()->startup()), then the AcisModifyEngine, which itself initializes 
AcisQueryEngine and GeometryModifyTool.  Even in cases where the AcisModifyEngine object is not 
used immediately, it should be created before any other CGM functions are called, since the constructor 
initializes many static datastructures used by CGM. 

After CGM initialization, the application calls several functions which import the geometry file(s), evaluate 
any intersections, then perform imprint and merge operations on the bodies.  Results are then printed out 
for the user. 

In this application, since it exits immediately after these geometry calculations, there is no need to 
explicitly shut down CGM. 

Table 17: Pseudo code for C++ driver code, forward declarations and main. 

// include tool and datastructure declarations 
#include “GeometryModifyTool.hpp” 
#include “GeometryQueryTool.hpp” 
(…) 
 
/// main program - initialize, then send to proper function 
int main (int argc, char **argv) 



{ 
   
    // initialize CGM 
  CGMApp::instance()->startup(); 
   
    // create an ACIS modify engine (query engine c reated by that) 
  AcisModifyEngine::instance(); 
 
    // Read in the geometry from files specified on  the command line 
  CubitStatus status = read_geometry(argc, argv); 
 
    // Check for overlaps 
  status = evaluate_overlaps(); 
 
    // Imprint bodies together, reporting on result s 
  status = imprint_bodies(); 
   
    // Merge bodies 
  status = MergeTool::instance()->merge_all_bodies( ); 
   
    // Print number and ids of non-shared surfaces 
  status = print_unmerged_surfaces(); 
} 

3.8.2 Reading geometry files 
In the read_geometry() function, shown in Table 18, each file is opened, then the file pointer is passed to 
GeometryQueryTool::import_solid_model function.  This function reads all the geometry entities defined 
in that file and stores them in the CGM database.  These entities are accessed through other functions in 
GeometryQueryTool. 

The return value from import_solid_model() should be checked for indications of problems reading the 
geometry file. 

Table 18: Pseudo code for C++ driver; read_geometry() function. 

CubitStatus read_geometry(int num_files, char **arg v)  
{ 
  GeometryQueryTool *gqt = GeometryQueryTool::insta nce(); 
   
    // For each file, open and read the geometry 
  for (i = 1; i < num_files; i++) { 
    file_ptr = fopen(argv[i], “r”); 
    if (file_ptr == NULL) PRINT_ERROR(“Could not op en file %s\n”, argv[i]); 
    else { 
      status = gqt->import_solid_model(file_ptr, ar gv[i], “ACIS_SAT”); 
    } 
  } 
  return CUBIT_SUCCESS; 
} 

 

3.8.3 Evaluating overlaps using pairwise intersections 
To find overlaps, each body is intersected with all the other bodies in the model; this is implemented in the 
evaluate_overlaps() function, shown in Table 19.  A copy of the body list is retrieved from CGM using the 
GeometryQueryTool::bodies() function.  Intersections are checked by removing a body from the list and 
intersecting it with all the bodies remaining on the list.  An option is passed to the intersect function 
instructing CGM to keep the old bodies being intersected, since these bodies must be checked for merging 
later in the application.   



If there are no overlaps, there should be no geometry entities resulting from the overlap calculation.  If 
there are entities remaining, these are reported to the user.  These entities are reported by topology type, 
with the topology-type filtering done using a list cast operation. 

GeometryQueryTool::delete_Body() is called at the end of evaluate_overlaps() to delete any bodies 
produced during the intersection operation. 

Table 19: Pseudo code for C++ driver; evaluate_overlaps() function. 

CubitStatus evaluate_overlaps()  
{ 
    // evaluate overlaps by intersecting bodies pai rwise 
  GeometryModifyTool *gmt = GeometryModifyTool::ins tance(); 
   
    // make a copy of the body list for use in this  function 
  DLIList<Body*> all_bodies, all_new_bodies; 
  GeometryQueryTool::instance()->bodies(all_bodies) ; 
   
    // step forward on this list, extracting the fi rst body and using it  
    // as a tool for remaining bodies 
  for (i = all_bodies.size(); i > 0; i--) { 
    all_bodies.last(); 
    Body *tool = all_bodies.remove(); 
     
      // intersect the tool with remaining bodies; make sure and keep old  
      // bodies, since we’re not using copies; save  new bodies for evaluation 
      // later 
    DLIList<Body*> new_bodies, temp_bodies = all_bo dies; 
    CubitStatus status = gmt->intersect(tool, temp_ bodies, new_bodies, 
                                        CUBIT_TRUE) ; 
    all_new_bodies += new_bodies; 
  } 
   
    // count number of geometric entities in new bo dies; if there are no 
    // overlaps, this number should be zero 
  DLIList<RefEntity*> child_entities, temp_children ; 
 
    // first get all child entities of the new bodi es 
  for (i = all_new_bodies.size(); i > 0; i--) { 
    all_new_bodies.get_and_step()->get_all_child_re f_entities(temp_children); 
    child_entities += temp_children; 
    temp_children.clean_out(); 
  } 
   
    // then filter the list, keeping only unique en tities 
  temp_children.clean_out(); 
  temp_children.merge_unique(child_entities); 
   
    // now report 
  if (temp_children.size() != 0) { 
     
      // check vertices 
      // temp_entities is cleaned out in the CAST_L IST macro, so no need 
      // to do that here 
    DLIList<RefEntity*> temp_entities; 
    CAST_LIST(temp_children, temp_entities, RefVert ex); 
    if (temp_entities.size() > 0)  
      PRINT_INFO(“   Vertices: %d\n”, temp_entities .size()); 
… 
      // now delete all the bodies produced by the intersections 
    DLIList<Body*> new_bodies; 
    CAST_LIST(temp_children, new_bodies, Body); 
    for (i = new_bodies.size(); i > 0; i--)  



      GeometryQueryTool::instance()->delete_Body(ne w_bodies.get_and_step()); 
  } 
   
    // we’re done 
  return CUBIT_SUCCESS; 
} 

 

3.8.4 Imprinting bodies 
Bodies are imprinted in mergechk in the imprint_bodies() function, shown in Table 20.  Geometry entities 
can merge together only if they have like topology and geometry.  Typically, models coming from CAD 
packages like Pro/Engineer or SolidWorks do not have topology imprints on neighboring bodies.  
Imprinting is accomplished using the GeometryModifyTool::imprint() function.  Since imprint will always 
change the number of topological entities in a model, numbers of entities before and after the imprint can 
be compared to determine whether any imprints were made. 

Table 20: Pseudo code for C++ driver; imprint_bodies() function. 

CubitStatus imprint_bodies()  
{ 
    // imprint all the bodies together, and report number of new  
    // entities formed 
  GeometryQueryTool *gqt = GeometryQueryTool::insta nce(); 
 
    // first, count old entities 
  int num_vertices = gqt->num_ref_vertices(); 
  int num_edges = gqt->num_ref_edges(); 
  int num_faces = gqt->num_ref_faces(); 
  int num_volumes = gqt->num_ref_volumes(); 
  int num_bodies = gqt->num_bodies(); 
   
    // imprint the bodies together, discarding old bodies 
  DLIList<Body*> old_bodies, new_bodies; 
  gqt->bodies(old_bodies); 
  GeometryModifyTool::instance()->imprint(old_bodie s, new_bodies); 
   
    // now count new numbers of entities, subtracti ng old numbers 
  num_vertices = gqt->num_ref_vertices() - num_vert ices; 
  num_edges = gqt->num_ref_edges() - num_edges; 
  num_faces = gqt->num_ref_faces() - num_faces; 
  num_volumes = gqt->num_ref_volumes() - num_volume s; 
  num_bodies = gqt->num_bodies() - num_bodies; 
 
    // report results 
  if (!num_vertices && !num_edges && !num_faces && !num_volumes && !num_bodies) 
    PRINT_INFO(“Imprinting resulted in no new entit ies.\n”); 
  else { 
    PRINT_INFO(“Imprinting resulted in the followin g numbers of new 
entities:\n”); 
    if (num_vertices) PRINT_INFO(“   %d vertices.\n ”); 
    if (num_edges)    PRINT_INFO(“   %d edges.\n”);  
    if (num_faces)    PRINT_INFO(“   %d faces.\n”);  
    if (num_volumes)  PRINT_INFO(“   %d volumes.\n” ); 
    if (num_bodies)   PRINT_INFO(“   %d bodies.\n”) ; 
  } 
   
    // ok, we’re done 
  return CUBIT_SUCCESS; 
} 



3.8.5 Merging and printing results 
In the main function, after the call to imprint_bodies() (see Table 17), all bodies in the model are checked 
for potential merges by calling MergeTool::merge_all_bodies().  This function uses a pre-defined tolerance 
while checking for coincident geometry; this tolerance can be changed using other functions in MergeTool. 

After merging, the unmerged surfaces can be determined by counting the number of parent volumes.  The 
print_unmerged_surfaces() demonstrates stepping through the global list of surfaces using the 
GeometryQueryTool::get_first_refface() and GeometryQueryTool::get_next_refface() functions (see Table 
21).  The CubitUtil::list_entity_ids() function takes a list of CubitEntity objects and prints the id numbers of 
those objects in a “pretty” format. 

Table 21: Pseudo code for C++ driver; print_unmerged_surfaces() function. 

CubitStatus print_unmerged_surfaces() 
{ 
    // Print number and ids of non-shared surfaces 
    // Non-shared surfaces are one with < 2 volumes  connected to them, 
    // or less than two parent entities 
  RefFace *face = GeometryQueryTool::instance()->ge t_first_ref_face(); 
 
  DLIList<RefEntity*> parents; 
  DLIList<RefFace*> unmerged_faces; 
 
  for (i = 0; i < GeometryQueryTool::instance()->nu m_ref_faces(); i++) { 
     
      // get the parent volumes 
    parents.clean_out(); 
    face->get_parent_ref_entities(parents); 
    if (parents.size() < 2) unmerged_faces.append(f ace); 
     
    face = GeometryQueryTool::instance()->get_next_ ref_face(); 
  } 
   
    // now print information on unmerged surfaces 
   
    // first cast faces to a cubit entity list; use  cast_list_to_parent, 
    // since it’s much more efficient 
  DLIList<CubitEntity*> temp_entities; 
  CAST_LIST_TO_PARENT(unmerged_faces, temp_entities ); 
  PRINT_INFO(“There were %d unmerged surfaces; thei r ids are:\n”, 
             unmerged_faces.size()); 
  CubitUtil::list_entity_ids(“\0”, temp_entities); 
   
    // now we’re done 
  return CUBIT_SUCCESS; 
}  

3.8.6 Program output 
The mergechk application was run using as input the geometry shown in Figure 1.  The output of the driver 
program applied to this geometry is shown in Table 22.  By default, the output from the calls to 
PRINT_INFO and PRINT_WARNING go to standard out; output from PRINT_ERROR goes to standard 
error.  The definitions of these print macros are located in CubitMessage.hpp, and can be changed in cases 
where printed information is not desired.  Alternatively, there are functions in CubitMessage which can be 
used to turn off printed output. 



 

Figure 1: Sample geometry used to test mergechk application. 

Table 22: Output of mergechk driver application. 

======================================= 
Read 2 ACIS Entities from the input file 
Processing ACIS BODY 1, 2 
Imported 2 Bodies: 1, 2 
======================================= 
ERROR: Intersection operation failed. 
       Empty Body created. 
 
Intersect finished;  
Old bodies retained: 2  
New bodies created:  (none) 
======================================= 
No body overlaps. 
======================================= 
10  
Group imprint finished;  
Old bodies retained:  
New bodies created: 1 2  
======================================= 
Imprinting resulted in the following numbers of new  entities: 
   6 vertices. 
   8 edges. 
   2 faces. 
======================================= 
 
...Merging all features in the model 
 
...Merging all Surfaces in the model 
Surface 13 and 15 consolidated 
Consolidated 1 surfaces 
 
...Merging all Curves in the model 
Consolidated 0 curves 
 
...Merging all Vertices in the model 
Consolidated 0 pairs of vertices 
======================================= 
There were 12 unmerged surfaces; their ids are: 
2 to 7, 9 to 12, 14, 16 
======================================= 
 

 



3.8.7 Makefile 
The makefile for the C++ mergechk application is shown in Table 23.  The first thing to note about this 
makefile is that it defines a make variable for CGM_BASE_DIR.  This variable defines the location of 
various parts of CGM, and should be set to one directory above the CGM libraries (i.e. the CGM libraries 
are located in CGM_BASE_DIR/geom. and …/util).  Using this make variable, the makefile also includes 
the make.client file.  This file defines many other make variables needed to compile CGM applications, 
therefore this file should be included in the makefile for all CGM applications.  CUBIT_BASE_DIR should 
be defined to the same value as CGM_BASE_DIR; this variable is used for legacy reasons in CGM 
makefiles. 

CGM application files are compiled using the default rules shown in Table 23.  The CGM_INCLUDE 
variable tells the compiler where to look for include files which declare CGM functions.  The other 
variables are defined in make.client, and provide other useful compiler flags.  The ECHO_COMMAND 
and PREFIX variables are used to reduce the amount of screen output when applications are compiled; if 
the user wishes to see the actual command being used to compile CGM applications, they can simply 
remove PREFIX from the default compile rule or reset the value of the PREFIX variable in their makefile. 

When linking CGM applications, it is very important to provide the CGM_LIBS_LINK and 
CUBIT_SYS_LINK variables as the last arguments to the link command before specification of the output 
file.  This ensures that any CGM or ACIS functions used by applications will be resolved by the libraries 
listed in these variables.  Including the CGM_LIBS variable on the list of dependents for the application 
will ensure that the application gets rebuilt when it is out of date with respect to the CGM libraries. 

Table 23: Makefile for the mergechk CGM application. 

CGM_BASE_DIR = /usr/local/eng_sci/cubit/src 
CUBIT_BASE_DIR = /usr/local/eng_sci/cubit/src 
include $(CUBIT_BASE_DIR)/util/OtherFiles/make.clie nt 
 
### main rule 
 
mergechk: mergechk.o ${CGM_LIBS} 
 ${LINKER} ${DEBUG_FLAG} ${LFLAGS} mergechk.o ${GEO M_LIBS_LINK} \ 
          ${EXTRA_GEOM_LIBS_LINK} ${GEOM_LIBS_LINK}  ${CUBIT_SYS_LINK} -o mergechk  
 
## replace some default suffix rules 
.SUFFIXES : .o .cpp 
.c.o :  
 ${ECHO_COMMAND} 
 ${PREFIX} ${CC} ${CFLAGS} ${MACH_CFLAGS} \ 
        ${CGM_INCLUDES} -c $< 
 
.cpp.o :  
 ${ECHO_COMMAND} 
 ${PREFIX} ${CXX} ${CXXFLAGS} ${MACH_CXXFLAGS} \ 
        ${CGM_INCLUDES} -c $< 

 
 

3.8.8 Summary 
The driver application described in this section shows how CGM can be used to import, modify and query 
solid geometry.  Initialization and termination of the package are simplified through simple API calls to 
singleton classes.  A large variety of functions can be accessed through this interface, without needing to 
know the details of how those functions are implemented. 

This same driver program has also been implemented in C, to demonstrate the use of C-language API 
functions written for CGM.  The C-language version of mergechk is of comparable complexity to the C++-
language version.  Using the C interface, programs written in C or FORTRAN can also access and use 
CGM for solid geometry evaluation. 



3.9 Facet Driver Application 
In the previous section, a simple driver application was described, showing how to use CGM to access and 
modify solid geometry.  In many cases, however, applications need to use facet-based geometry, and 
furthermore, would like to avoid the cost of linking solid modeling engine code.  This section gives a 
simple example of how to do that. 

The example described in this section shows how to initialize a facet-based model and query the resulting 
surfaces.  Instructions are also given on how to build this application without linking the ACIS solid 
modeling engine.  The pseudo-code below has many lines of the actual code removed, for brevity; the 
complete example is distributed with the CGM libraries, in the cgm_apps/examples/facetdriver 
subdirectory. 

3.9.1 Forward declarations and main 
 
The source code for forward declarations and the main function are shown in Table 17.  This file begins 
with the inclusion of files containing declarations of functions and datastructures.  In most CGM 
applications, GeometryQueryTool.hpp and/or GeometryModifyTool.hpp will be included, since these are 
the primary points of access to CGM.  The FacetQueryEngine.hpp file is also included, for declaration of 
the facet geometry construction functions.  In the main function, the first few lines of code initialize first 
CGM (by calling CGMApp::instance()->startup()), then the Facet and Geometry query tools.  These classes 
are used to create and query facet-based geometry, respectively. 

After CGM has been initialized and the respective geometry engine classes created, we are ready to begin 
creating facet-based geometry. 

Table 24: Pseudo code for facet driver code, forward declarations and main. 

// include tool and datastructure declarations 
#include “GeometryQueryTool.hpp” 
#include “FacetQueryEngine.hpp”  
(…) 
 
/// main program - initialize, then send to proper function 
int main (int argc, char **argv) 
{ 
   
    // initialize CGM 
  CGMApp::instance()->startup(argc, argv); 
   
    // Initialize the GeometryQueryTool and facet e ngine 
  FacetModifyEngine *fqe = FacetModifyEngine::insta nce(); 
  GeometryQueryTool *gqt = GeometryQueryTool::insta nce(); 

3.9.2 Creating point and facet objects 
CGM provides point and facet classes for holding data for those objects; the class hierarchy and design is 
described elsewhere In brief, there are abstract base classes CubitPoint and CubitFacet which define 
functions for accessing data, and leaf classes for actually storing those data.  For applications which need 
CGM to store the facet data, the CubitPointData and CubitFacetData leaf classes should be used. 

In this example, a unit cube is created, with two triangular facets per cube face.  Table 25 shows the code 
for creating the point and facet objects for this geometry.   The CPD and CFD typedefs are used as 
shorthand for the CubitPointData and CubitFacetData classes, respectively.  Points are created for the eight 
corners of the cube (some lines have been left out for brevity; the unabridged source code for these 
examples can be found in an Appendix of this report).  All points are put on a list, which is used later as 
input to the functions which make the faceted surfaces.  Facets are created from successive point triples, 
corresponding to the facets bounding the unit cube.  These facets are also put in a list.  These lists are over 



the abstract base class objects CubitPoint and CubitFacet, to allow applications to use the same facet-based 
geometry creation functions with other types of point and facet classes. 

Applications deriving point and facet data from other sources would simply derive their own versions of 
CubitPoint and CubitFacet leaf classes, and build lists of these objects using those data.  Those lists would 
be used as described below to create facet-based geometry. 

Table 25: Pseudo code for facet driver, creating points and facets. 

  DLIList<CubitFacet*> f_list; DLIList <CubitPoint* > p_list; 
 
    // define some really simple facets, correspond ing to the 
    // facets for a brick 
  typedef CubitPointData CPD; typedef CubitFacetDat a CFD; 
  
  CPD *p1 = new CPD(0, 0, 0); CPD *p2 = new CPD(1, 0, 0); 
 (…) 
  p_list.append(p1); p_list.append(p2); 
 (…) 
  CFD *f1 = new CFD(p1,p3,p2); CFD *f2 = new CFD(p1 ,p4,p3); // xy- 
 (…) 
  f_list.append(f1); f_list.append(f2); f_list.appe nd(f3);  
 (…) 

 

3.9.3 Creating facet-based geometry 
Table 26 shows the code for creating the faceted surfaces and the resulting body for this example.   

The points and triangular facets bounding the geometry we would like to construct are stored in point and 
facet lists, respectively.  There are several options for creating surfaces from these facets.  The surface(s) 
can be piecewise planar, corresponding exactly to the (planar) facets used as input; or, a smooth 
approximated surface can be fit over these points (see [2] for a description of how this is done).  This 
option is controlled by an integer surf_type in Table 26.  There is also an option for creating a single 
surface from these facets, or multiple surfaces separated based on a prescribed angle between neighboring 
facets.  This angle is represented in Table 26 by the angle  variable; using a value of 30 degrees ensures 
that for most models a single surface will be created.  Using these parameters, the faceted surface(s) are 
created by calling the make_facet_surface function in FacetQueryEngine. 

Once one or more faceted surfaces are created, those surfaces can be used as-is for normal and point 
evaluations, or they can be used to construct a body.  The latter might be useful is a volume mesh of the 
region bounded by the surfaces is desired.  Table 26 shows the steps necessary for creating a body from a 
collection of surfaces.  The result is a topological body, pointed to by body_ptr, which is bounded by a 
collection of facet-based surfaces of our own definition. 

Table 26: Pseudo code for facet driver; creating facet-based surface, shell, lump and body. 

  double angle = 30.0; 
  DLIList<Surface*> surf_list; 
  CubitStatus result; 
  result = fme->make_facet_surface(NULL, f_list, p_ list, angle, 4,  
                                   false, false, su rf_list); 
  ShellSM *shell_ptr; 
  result = fme->make_facet_shell(surf_list, shell_p tr); 
  DLIList<ShellSM*> shell_list; 
  shell_list.append(shell_ptr); 
  Lump *lump_ptr; 
  result = fme->make_facet_lump(shell_list, lump_pt r); 
  DLIList<Lump*> lump_list; 
  lump_list.append(lump_ptr); 
 
  BodySM *bodysm_ptr; 



  Body *body_ptr; 
  result = fme->make_facet_body(lump_list, bodysm_p tr); 
                                 
  body_ptr = GeometryQueryTool::instance()->make_Bo dy(bodysm_ptr); 

 

3.9.4 Evaluation of topology and geometry 
Once the geometry and topology have been created, applications determine what kind of evaluations of that 
geometry are desired.  Table 27 shows an example of querying the topology of the model, then printing 
information about some of those topological entities.  In this example, the number and position of 
geometric vertices in the model are printed. 

Table 27: Pseudo code for facet driver; print number and positions of geometric vertices. 

     // print vertex positions 
  DLIList<RefVertex*> verts; 
  gqt->ref_vertices(verts); 
  int i; 
  for (i = verts.size(); i > 0; i--) { 
    CubitVector coords = verts.get_and_step()->coor dinates(); 
    PRINT_INFO(“Vertex %d: %f, %f, %f.\n”,  
               8-i, coords.x(), coords.y(), coords. z()); 
  } 

3.9.5 Evaluating facet-based surfaces 
Table 28 shows how facet-based surfaces are queried for closest point and normal.  A pointer to the first 
geometric face is obtained from GeometryQueryTool, then the face is queried for a point closest to the 
coordinate triple (.5, .5, 0).  The normal of the surface at this point is also queried.  Note that the RefFace 
class defines many other functions for querying the geometry of a surface; for a complete list of these 
functions, see the RefFace.hpp header file. 

In some cases, applications need to evaluate individual facets in the model, for example when using a 
smooth surface approximation.  This is done using the barycentric coordinates on the triangular facets.  The 
CubitFacet::evaluate() function is used for this purpose, as shown in Table 28. 

Table 28: Pseudo code for facet driver; evaluate geometric surface and facet. 

  RefFace *face = gqt->get_first_ref_face(); 
    // find closest point to several places 
  CubitVector test_position, result_position, norma l; 
   
  test_position.set(.5, .5, 0); 
  face->find_closest_point_trimmed(test_position, r esult_position); 
  normal = face->normal_at(result_position); 
  PRINT_INFO(“Point (%4.2f, %4.2f, %4.2f):\n  “ 
             “closest=(%4.2f, %4.2f, %4.2f), normal =(%4.2f, %4.2f, %4.2f).\n”, 
             test_position.x(), test_position.y(), test_position.z(),  
             result_position.x(), result_position.y (), result_position.z(),  
             normal.x(), normal.y(), normal.z()); 
 
  double a = 1.0/3.0, b = 1.0/3.0, c = 1.0/3.0; 
  CubitVector temp_point(a,b,c), eval_point; 
  f1->evaluate( temp_point, &eval_point ); 
  PRINT_INFO(“Evaluation of facet 1 at (%4.2f, %4.2 f, %4.2f) is “ 
             “(%4.2f, %4.2f, %4.2f).\n”, 
              a, b, c, eval_point.x(), eval_point.y (), eval_point.z() ); 



3.9.6 Program output 
The output of this example is shown in Table 29.  As expected, one surface is created, with no bounding 
curves or vertices.  When evaluated in the center of each face, the closest point is clearly on a curved 
surface, while the normals are parallel to the coordinate axes, as expected. 

As expected, 6 surfaces are created, along with eight vertices at the corners of the cube.  All surface 
evaluations fall on unit faces of the cube, and normals are parallel to the unit vectors, as expected. 

Table 29: Output of facet driver application, angle = 30. 

Constructed 1 surfaces. 
Body successfully created. 
Number of vertices = 0 
Number of edges = 0 
Number of faces = 1 
Number of volumes = 1 
Number of bodies = 1 
Point (0.50, 0.50, 0.00): 
  closest=(0.50, 0.50, -0.30), normal=(-0.07, 0.07,  -1.00). 
Point (0.50, 0.50, 1.00): 
  closest=(0.50, 0.50, 1.30), normal=(0.07, 0.07, 1 .00). 
Point (0.50, 0.00, 0.50): 
  closest=(0.50, -0.30, 0.50), normal=(0.07, -1.00,  -0.07). 
Point (0.50, 1.00, 0.50): 
  closest=(0.50, 1.30, 0.50), normal=(0.07, 1.00, 0 .07). 
Point (0.00, 0.50, 0.50): 
  closest=(-0.30, 0.50, 0.50), normal=(-1.00, -0.07 , 0.07). 
Point (1.00, 0.50, 0.50): 
  closest=(1.30, 0.50, 0.50), normal=(1.00, -0.07, -0.07). 
Evaluation of facet 1 at (0.33, 0.33, 0.33) is (0.7 3, 0.27, -0.25). 
Evaluation of facet 2 at (0.00, 1.00, 0.00) is (0.0 0, 1.00, 0.00). 
Evaluation of facet 3 at (0.50, 0.50, 0.00) is (0.5 0, -0.11, 1.11). 
Evaluation of facet 4 at (0.00, 0.50, 0.50) is (0.50, 1.11, 1.11). 
 
Table 30 shows the output of a modified facet driver application, where an angle of 135 degrees is used.  
With this input, any facets whose interior angle is less than 135 degrees will be separated by a topological 
curve, with a C1 discontinuity in the surface as well.  Since the facets input form a logical cube, we expect 
to see that cube recovered in the geometric topology.  Indeed, this is the result we get, i.e. there are eight 
vertices, twelve curves and six faces in the resulting model.  Interestingly, the closest point evaluations all 
fall on planar surfaces; this is because, for each surface in the model, the facets making up each surface are 
co-planar. 

Table 30: Output of facet driver application, angle = 135. 

Constructed 6 surfaces. 
Body successfully created. 
Number of vertices = 8 
Number of edges = 12 
Number of faces = 6 
Number of volumes = 1 
Number of bodies = 1 
Vertex 0: 1.00, 1.00, 1.00. 
Vertex 1: 0.00, 1.00, 1.00. 
Vertex 2: 0.00, 0.00, 1.00. 
Vertex 3: 1.00, 0.00, 1.00. 
Vertex 4: 1.00, 1.00, 0.00. 
Vertex 5: 1.00, 0.00, 0.00. 
Vertex 6: 0.00, 0.00, 0.00. 
Vertex 7: 0.00, 1.00, 0.00. 
Point (0.50, 0.50, 0.00): 
  closest=(0.50, 0.50, 1.00), normal=(0.00, 0.00, 1 .00). 
Point (0.50, 0.50, 1.00): 
  closest=(0.50, 0.50, 1.00), normal=(0.00, 0.00, 1 .00). 
Point (0.50, 0.00, 0.50): 
  closest=(0.50, 0.00, 1.00), normal=(0.00, 0.00, 1 .00). 
Point (0.50, 1.00, 0.50): 



  closest=(0.50, 1.00, 1.00), normal=(0.00, 0.00, 1 .00). 
Point (0.00, 0.50, 0.50): 
  closest=(0.00, 0.50, 1.00), normal=(0.00, 0.00, 1 .00). 
Point (1.00, 0.50, 0.50): 
  closest=(1.00, 0.50, 1.00), normal=(0.00, 0.00, 1 .00). 
Evaluation of facet 1 at (0.33, 0.33, 0.33) is (0.6 7, 0.33, 0.00). 
Evaluation of facet 2 at (0.00, 1.00, 0.00) is (0.0 0, 1.00, 0.00). 
Evaluation of facet 3 at (0.50, 0.50, 0.00) is (0.5 0, 0.00, 1.00). 
Evaluation of facet 4 at (0.00, 0.50, 0.50) is (0.5 0, 1.00, 1.00).  
 

3.9.7 Makefile 
The makefile for the facets application is shown in Table 31.  In most ways, this makefile is similar to that 
of the mergechk application in Table 23.  The most important difference is in the link line, where the 
${EXTRA_GEOM_LIBS_LINK} variable is not present, as it is in the mergechk makefile.  This make 
variable is the one which contains definitions for the ACIS libraries; not including this variable in the facets 
link line results in facets being linked without the ACIS libraries.   This saves a substantial amount of 
memory in the application. 

Table 31: Makefile for the facets CGM application. 

CGM_BASE_DIR = /usr/local/eng_sci/cubit/src 
CUBIT_BASE_DIR = /usr/local/eng_sci/cubit/src 
include $(CUBIT_BASE_DIR)/util/OtherFiles/make.clie nt 
 
### main rule 
 
facets: facets.o ${GEOM_LIBS} 
 $(MAKE) libs 
 ${LINKER} ${LFLAGS} ${MACH_LFLAGS} ${DEBUG_FLAG} f acets.o ${GEOM_LIBS_LINK} \ 
 ${CUBIT_SYS_LINK} -o facets 
 
## replace some default suffix rules 
.SUFFIXES : .o .cpp 
.c.o :  
 ${ECHO_COMMAND} 
 ${PREFIX} ${CC} ${CFLAGS} ${MACH_CFLAGS} \ 
        ${CGM_INCLUDES} -c $< 
 
.cpp.o :  
 ${ECHO_COMMAND} 
 ${PREFIX} ${CXX} ${CXXFLAGS} ${MACH_CXXFLAGS} \ 
        ${CGM_INCLUDES} -c $< 

 
 

3.9.8 Summary 
The facets application described in this section shows how CGM can be used to create and query facet-
based geometry.  While this example was done using hard-wired point positions and facet topologies, it 
would be simple to change to account for run-time-defined facets. 

4 Application Developer’s Guide 

4.1 Introduction 
There are two types of applications of CGM; the first type is where an application relies entirely on CGM 
for its geometry functionality, and does not require addition of data to CGM geometry objects or extension 
of their functional capabilities.  Another use of CGM, and one which is much more powerful, is to use 
CGM geometry objects as foundation classes, upon which additional functionality is implemented.  For 
example, classes can be derived from the CGM basic geometry entity types (RefVertex, RefEdge, etc.) 



which not only provide geometry functionality, but which also (for example) provide mesh-related 
functions and datastructure. 

CGM has been carefully designed to support applications of the latter type.  In fact, the CUBIT application 
is built on CGM by deriving CUBIT-specific geometry classes, which enrich the CGM geometry classes 
with functions for generating and storing mesh.  Since class derivation is used to extend the CGM classes, 
these extended classes must be created and used in place of the unenriched CGM classes, even if that 
creation is taking place from within CGM.  This is accomplished using Factory classes and other advanced 
designed techniques; these techniques are described in this section. 

This section begins by describing the CGM geometry entities which can be enriched using application-
specific subclasses.  The Factory class used to create geometry entities is then described, along with how 
this class can be extended to create application-specific geometry entities.  Sections 3.7.5 and 4.3 describe 
geometry attributes, which are used to associate application-specific data to geometry entities.  Section 4.4 
describes the ToolData mechanism, which can be used to associate application-specific data to many types 
of data including geometry entities.  Section 4.5 describes the CubitObserver mechanism, which is used to 
notify application-specific objects of changes to geometry entities and other observable objects.  This 
chapter concludes with specific information on how CUBIT uses these mechanisms to implement meshing 
functionality on top of the CGM classes. 

4.2 RefEntityFactory: Topological Entity Construction 
As described earlier, the children of the RefEntity class are RefVertex, RefEdge, RefFace, RefVolume, 
Body, RefGroup, RefPart, RefAssembly, and RefCoordSys.  These entities are most useful for 
implementing applications using CGM, and are therefore the entities from which child classes can be 
derived.  In the future, derivation of classes from other entities, like Loops and CoEdges, may be allowed. 

Also described earlier was the relationship between entities in the solid model file and the corresponding 
CGM entities; for example, each FACE in an ACIS model has a corresponding RefFace in the CGM 
model.  When geometry is imported or created, the CGM entities are constructed for each entity in the solid 
model; this construction is implemented in CGM code, in particular in GeometryQueryTool.  However, if 
an application derives child classes from the CGM entities, the application-specific objects must be 
constructed instead.  Constructors for the application-specific child classes cannot be called from the CGM 
code, since this would make CGM dependent on those applications.  Therefore, the construction of 
RefEntity’s in the geometric model is implemented in a singleton factory; CGM is designed to allow this 
factory to be replaced with an application-specific factory, which constructs application-specific derived 
class objects and returns them as CGM objects. 

Consider first the CGM factory, implemented in the RefEntityFactory class.  Following the singleton 
pattern, there is only a single RefEntityFactory object created for the application; this object is created the 
first time RefEntityFactory::instance() is called.  Afterwards, this function simply returns a pointer to the 
singleton factory instance (a static pointer to the instance is maintained in RefEntityFactory).  CGM 
requires that all RefEntity’s be constructed using RefEntityFactory (this is accomplished by making the 
constructors of RefEntity leaf classes inaccessible from other classes).  RefEnityFactory declares virtual 
functions for constructing geometric entities, e.g. RefEntityFactory::construct_RefFace, 
RefEntityFactory::construct_RefVolume, etc. 

To substitute an application-specific factory for RefEntityFactory, an application simply derives that 
factory from RefEntityFactory, and constructs that application-specific factory before 
RefEntityFactory::instance() is called (this is typically done just before initializing GeometryModifyTool).  
A pointer to the application-specific factory is still stored in RefEntityFactory, and returned from 
RefEntityFactory::instance().  However, since RefEntityFactory::construct_xxx functions were declared 
virtual, the application-specific factory can substitute alternative implementations for these functions; these 
implementations simply construct application-specific entities, passing them back as the parent class 
pointer. 

For example, say an application wants to extend the functionality of vertices only.  The application would 
write a derived entity factory, ARefEntityFactory: 



Class ARefEntityFactory : public RefEntityFactory 
 { 
public: 

ARefEntityFactory *instance()  
 { 
if (instance_ == NULL) instance_ = new ARefEntityFa ctory;  
return instance_; 
 } 

 
Virtual RefVertex *construct_RefVertex(…); 
 } 

 
Any CGM code calling RefEntityFactory::construct_RefVertex would actually call the function in 
ARefEntityFactory, thanks to the virtual function mechanism in C++.  This way, an application-specific 
vertex is created instead of an unextended vertex object.  Note that, since the extended vertex is derived 
from RefVertex, all functions defined for RefVertex and its parent classes can be called directly from 
ARefVertex.  Therefore, the ARefVertex objects can be used for normal CGM-type topology traversal, as 
well as for application-specific uses. 

Details on how CUBIT uses this mechanism to implement meshing functionality on geometry objects are 
given in the next chapter. 

4.3 Application-Specific Attributes  
Geometry attributes are used to store application-specific data directly on objects to which they are 
associated.  This data is saved to and restored from the solid model files automatically.  Geometry attributes 
used by CGM include entity names, ids, group membership, and others.  CGM also provides a means for 
applications to define their own attributes, which are then managed by CGM along with and in the same 
way as CGM attributes. 

Similar to how application-specific RefEntity objects are managed, CGM utilizes a factory pattern for the 
creation of attributes.  A pure virtual base class, named CubitAttribFactory, is defined with two pure virtual 
functions, both named create_cubit_attrib; these functions create an application-specific attribute from an 
attribute type and a simple attribute pointer, respectively.   

The process for defining an application-specific attribute factory is as follows.  First, the application-
specific attribute classes are designed and written (see other attributes like CAEntityName and CAEntityId 
for guidelines on writing attributes).  Then, an application-specific attribute factory is named and written 
(in CUBIT, this class is named CAFactory); this factory is derived from CubitAttribFactory: 

Class AppCAFactory : public CubitAttribFactory 
 {…} 

 
Two functions need to be declared and defined: 

CubitAttrib *AppCAFactory::create_cubit_attrib(cons t int attrib_type, 
RefEntity *owner) 
 {…} 
 
CubitAttrib *AppCAFactory::create_cubit_attrib(Cubi tSimpleAttrib *csa_ptr, 
RefEntity *owner)  
 {…} 

 
Both these functions must be defined, since they are called from CubitAttrib. 

The constructor for CubitAttribFactory is declared to be protected, which means only child and friend 
classes of CubitAttribFactory can construct this class.  Typically, an application-defined attribute factory 
will be written with a static member which constructs the factory.  Inside that function, the factory must be 
constructed and then passed to CubitAttrib, which stores a pointer to it: 

static AppCAFactory *create_factory() { 



ApplicationCAFactory *factory = new ApplicationCAFa ctory(); 
CubitAttrib::set_cubit_attrib_factory(factory); 
 } 

 
This factory should be created before the application imports any solid model files, otherwise any 
application-specific attributes in those files will not be initialized automatically. 

There are several static variables and one field in an enum corresponding to each type of attribute.  These 
variables are described in Table 32.  Currently, these variables and the enum are defined in 
CubitAttrib.hpp, inside the CGM code.  This requires changes to CGM if applications choose to add more 
attributes.  This will be changed eventually to allow the definition of these variables in the application-
specific attribute factory. 

Table 32: Variables and enum defined for each attribute.  Currently, these variables are defined in 
CubitAttrib.hpp. 

Variable / Enum Description 
AutoActuateFlag[t], 
autoUpdateFlag[t] 

When true, attributes of type t actuate/update automatically 
after restoration / before saving from/to solid model file. 

AutoReadFlag[t], 
AutoWriteFlag[t] 

When true, attributes of type t are read from/written to the solid 
model file automatically. 

ActuateInConstructor[t] When true, attributes of type t are actuated from a call inside 
the object constructor; otherwise, they are attributed after all 
entities have been read from the solid model file in which the 
attributes resided. 

ActuateAfterGeomChanges[t] If true, attributes of type t are not actuated until after any 
changes to the geometry resulting from other attributes have 
taken place. 

CubitAttributeType Enum of attribute types; new attributes should be defined 
before CA_LAST_CA in CubitAttrib.hpp. 

AttTypeName[t] User-visible attribute type name of attribute t. 
AttInternalName[t] Internal name for attribute type t (written to solid model file for 

identification purposes). 
 
When an attribute’s AutoActuateFlag flag is set to true, attributes of that type are actuated automatically 
when the solid model file is imported.  If the attribute’s ActuateInConstructor flag is set to true, the 
attribute is actuated from inside the constructor of the geometry entity to which it is associated, otherwise it 
is actuated after the entire solid model is imported and the corresponding geometry entities created.  
Actuation of application-specific attributes should be done carefully, especially if those attributes rely on 
functions or data stored on application-specific geometric entities derived from the RefEntity leaf classes 
(RefVertex, RefEdge, etc.).  In this situation, the actuate() function for these attributes will be called from 
the RefEntity leaf class constructor, before the application-specific entity has been created, so casting to an 
application-specific object will fail.  Application-specific attribute actuate functions should check to make 
sure they are applied to the correct type of entity, and if not, should return CUBIT_FAILURE.  The actuate 
function can be called again from the application-specific entity constructor by calling 
CubitAttribUser::auto_actuate_cubit_attrib(), at which time the attribute can actuate correctly. 

4.4 ToolData: Application-Specific Data 
There are times when applications need to store data on geometric entities that is of a transient nature.  For 
example, the mapping algorithm in CUBIT stores angle information on the vertices bounding surfaces and 
volumes.  This data is no longer used after the meshing algorithm is finished generating mesh, and so there 
is no need to store it in the datastructure of the geometric entity.  CGM provides a mechanism for storing 
transient data on entities; this mechanism is referred to as the ToolData capability. 

This capability consists of two base classes, ToolData and ToolDataUser.  ToolDataUser is a base class of 
RefEntity, and is used to manage a list of ToolData objects.  ToolDataUser implements functions for 



adding, removing, and returning a list of ToolData objects.  Classes derived from ToolData are used to 
store the transient information which should be associated with the ToolDataUser.  ToolData also stores a 
pointer to the next ToolData in a list.  Thus, ToolData objects are stored in a singly linked list, the head of 
which is pointed to by ToolDataUser. 

Implementing new types of ToolData objects is quite simple.  ToolData-derived classes are typically named 
TDSomeName, and are required to implement an identification function: 

int TDSomeName::is_some_name()  
{return (get_address(TDSomeName_TYPE) ? CUBIT_TRUE : CUBIT_FALSE);} 
This function is called from ToolDataUser to identify ToolData types: 

TDSomeName my_td =  
(TDSomeName *) tool_data_user->get_TD(&ToolData::is _some_name); 

See documentation on ToolData, ToolDataUser, and some of the CGM ToolData classes (TDCompare, 
TDUniqueId) for more details. 

4.5 CubitObserver: Application-Specific Observation of Entities 
One of the classic problems in object-oriented design is how to allow one class (the observer) “observe” 
another class (the observable), without making the implementation of observable know about the 
implementation of the observer.  This problem is addressed by using the well-known Observer pattern in 
C++.  CGM’s implementation of observers, in CubitObserver and CubitObservable, is modeled directly 
after that pattern. 

To implement an application-specific observer, the developer needs to do the following: 

• Derive the application-specific class, e.g. ASObserver, from CubitObserver 
• Implement ASObserver::notify_observer(CubitObservable *observable, EventType observer_event, 

CubitBoolean from_observable), which handles events generated by observables. 
• Use the functions CubitObserver::register_observable and CubitObserver::unregister_observable to 

register and unregister the application-specific observer with the observable 
(CubitObserver::unregister_observable does not necessarily need to be called, since it is called in the 
CubitObserver destructor). 

The EventType enum is defined in CubitDefines.h. 

There is also a mechanism in CubitObserver for implementing “static” observers, that is observers which 
observe all events.  Static observers can be registered by calling CubitObserver::register_static_observer 
and CubitObserver::unregister_static_observer.  This mechanism is used in CUBIT to implement some 
graphics functions and to manage some global entity lists, for example. 

Applications are also free to implement their own observables as well as observers to observe them.   In 
fact, there are some classes in CGM which are derived from both CubitObservable and CubitObserver.  For 
example, RefGroup is both a CubitObserver, to keep track of entities which are in the group but which 
should get removed upon deletion, as well as a CubitObservable, since it too can be contained in groups. 

4.6 Example: CUBIT Implementation Using CGM 
In this example, details are given about how CUBIT is implemented on top of CGM.  This purpose of this 
example is to show how an application might extend the capabilities of CGM by deriving classes from the 
CGM classes.  It also serves as an introduction to CUBIT developers of the CUBIT database. 

4.6.1 Derived topological entities 
In addition to representing geometry, geometric entities in CUBIT must also be able to store mesh, 
represent finite element boundary conditions, and serve as a point of access to meshing algorithms assigned 
to those entities.  This is done using inherited classes. 



The inheritance hierarchy used in CUBIT is shown in .  As the figure shows, from each RefXxx leaf class 
in CGM (RefVertex, RefEdge, RefFace, RefVolume, Body and RefGroup), CUBIT derives  a 
corresponding MRefXxx class (MRefVertex, MRefEdge, etc.).  CUBIT also defines a parent class for these 
leaf classes, which is named MRefEntity.  MRefEntity serves as a common base class for meshable entities 
in CUBIT, and is decorated by (i.e. derived from) various classes which define certain meshing-related 
functions.  The parent classes of MRefEntity are MeshContainer, used to store mesh on an MRefEntity, and 
MeshToolUser, used to associate meshing tool data with the entity, including the meshing scheme assigned 
to the entity. 

4.6.2 MRefEntity class 
Using a common MRefEntity base class simplifies the design of the MRefXxx classes by allowing the 
implementation of meshing functionality at a higher level in the derivation hierarchy.  However, it also 
complicates things because of the use of multiple inheritance.  Much of the parsing code in CUBIT 
operates on lists of MRefEntity’s, since the parsing involves setting meshing parameters, but it also needs 
to access functions defined above RefEntity, list CubitEntity::class_name and CubitEntity::id.  For these 
reasons, most of the commonly-used functions in RefEntity and above are defined as virtual functions, and 
can be overridden in derived classes.  Using this technique, common functions like class_name and id are 
defined as virtual functions in MRefEntity as well, so that they can be used with MRefEntity objects.  
These functions are defined in the MRefXxx leaf classes, and call the CubitEntity functions explicitly. 

CGM applications not needing a common base class for derived geometric entities need not implement one.  
If an application does define a common base class like that, but does not implement those common 
functions, those functions are only accessible from objects of the leaf classes or from CGM objects. 

4.6.3 Topology traversal functions 
One of the most common operations on geometric entities is to access topologically connected entities, for 
example finding all the edges containing a given vertex.  These functions are implemented in 
TopologyEntity, and can be called directly from RefXxx objects.  However, these functions pass back lists 
of RefXxx objects, which may still need to be casted to MRefXxx objects.  To solve this problem, a similar 
set of topology traversal functions is implemented in MRefEntity which return lists of MRefXxx objects; 
these functions have the same name as those in TopologyEntity, except with an ‘m’ prepended to their 
names, e.g. mref_edges, mref_faces, etc.  To access the ref_xxx functions directly from an MRefEntity 
object, the MRefEntity::topology_entity() function should be used to first cast the entity to a 
TopologyEntity, on which the ref_xxx() function can be called directly.  

4.6.4 MRefEntityFactory 
As described in the previous chapter, a factory class is used to create geometric entities in CGM.  This 
allows the definition of application-specific geometric entities, which are created from an application-
specific factory.  CUBIT defines the MRefEntity class for this purpose.  Note that this factory class must be 
instantiated before the creation of any geometry in the application; in CUBIT, this is done by calling 
MRefEntityFactory::instance() just before the first call to GeometryModifyTool::instance(). 

If an application-specific factory is implemented, it is also responsible for the storage of global lists of 
geometric entities; global list functions like ref_volumes(), ref_faces(), etc. must also be defined (these 
functions are declared virtual in RefEntityFactory for this purpose).  CUBIT implements this by defining 
pointers to global lists in RefEntityFactory.  These lists are created in the first call to 
RefEntityFactory::instance(), just after calling the RefEntityFactory constructor; if an application-specific 
entity factory has already been created, this part of RefEntityFactory::instance() is never executed, and the 
list pointers remain NULL. 

4.6.5 AttribFactory for CUBIT-specific attributes 
As described in the previous chapter, applications can define their own attributes by providing an 
application-specific attribute factory.  This factory should be instantiated before any attributes are created.  



In CUBIT, the CAFactory serves this purpose, and is instantiated before the first call to 
GeometryModifyTool::instance().  CAFactory is derived from CubitAttribFactory, which is itself declared 
in the CubitAttrib class header. 

Currently, CUBIT-specific attribute types are part of the CubitAttributeType enum, defined in CGM.  
Technically, this should not be done, since it requires modification of CGM to add application-specific 
attributes.  Other applications can easily bypass this by defining their own use of the CubitAttributeType 
values above the ones used in CGM (those currently end at CA_DEFERRED_ATTRIB in 
CubitAttrib.hpp).  This will be changed eventually to allow the definition of arbitrary attribute types 
(identified by an integer). 

4.6.6 DrawingTool 
The DrawingTool class in CUBIT is used to implement graphics functionality for the entire code.  As such, 
this class depends on virtually all of the datastructure classes in CUBIT, and many of the datastructure 
classes depend on DrawingTool.  Eventually, this backward dependence will be removed and replaced 
entirely by the static observer mechanism described earlier.  That implementation will be done 
incrementally.  In the meantime, the GdrawingTool class in CGM serves as a parent class of DrawingTool, 
and simply provides empty functions for those DrawingTool functions which are called from within CGM.  
Applications are welcome to derive their own drawing mechanism from GDrawingTool (see 
GDrawingTool for more details). 

4.6.7 The Model class 
It has proven useful in CUBIT to have a single point of access to all the geometry, mesh and boundary 
condition data created during the meshing process; the Model class serves that purpose in CUBIT.  While 
the actual data may not be stored there, Model acts as a common point of reference.  The functions in 
Model then call the appropriate functions in MeshContainer, CGM, or wherever else to retrieve the 
necessary data.  Other applications can easily port to using CGM by retaining their equivalent of the Model 
class, and modifying it to provide access to CGM functions. 

4.6.8 Adding mesh data to MRefGroup 
In addition to adding various types of decoration to the basic geometry capabilities in the RefEntity classes, 
sometimes there is a need to modify the fundamental purpose of one of those datastructures.  In the CUBIT 
application, RefGroup has been modified to store not only geometry entities but also mesh entities.  This 
required the addition of functions necessary for adding, removing and accessing the mesh stored in a group.  
MRefGroup is still derived from RefGroup (as well as MRefEntity), but also extends the functional 
interface of RefGroup by defining MRefGroup functions and datastructure.  Thus, applications can use a 
combination of class decoration and class extension to add functionality to the basic CGM geometric 
entities. 

5 CUBIT Usage of CGM 
 

5.1 MRefEntity Class Structure 
The structure of the MRefEntity class is shown in .  Note that MRefEntity is not derived from RefEntity.  
While virtual inheritance could have been used to derive MRefEntity from RefEntity, this was not done for 
reasons of efficiency, and because of the already complicated inheritance hierarchy below the 
TopologyEntity and RefEntity classes in CGM.  The MRefXxx leaf classes derive from both MRefEntity 
and their RefXxx counterparts. 

Since the parsing code works extensively with lists of MRefEntity objects, many of the functions defined in 
RefEntity, TopologyEntity and CubitEntity have been re-defined in MRefEntity.  In order to avoid 
ambiguities when calling those member functions on MRefXxx objects, definitions in the MRefXxx classes 



were needed as well.  Further complicating this problem, some of those functions were already re-defined 
in some of the RefXxx classes (e.g. bounding_box()).  To simplify definition of these functions, macros 
were written and are stored in MRefFuncs.hpp.  Four macros are defined: 

• MREFFUNCS_DECLARE(CLASS) 
Declares functions common to MRefEntity and MRefXxx classes; CLASS argument is used in the 
(inline) definition of the entity_type() function. 

• MREFFUNCS_DIFFERENT_IMPLEMENTATIONS 
This set of functions has a common declaration across MRefEntity and its children, but the definitions 
are different (e.g. bounding_box() considers only the entity for MRefVertex-MRefBody, but considers 
all the contained entities for MRefGroup).  #include’d in the MREFFUNCS_DECLARE macro. 

• MREFFUNCS_DEFINE1(CLASS) 
Common definitions of functions declared in MREFFUNCS_DECLARE; #include’d in the 
MRefXxx.cpp files. CLASS argument is used to qualify the function definition, e.g. 
CLASS::class_name(). 

• • MREFFUNCS_DEFINE2(CLASS) 
Common definitions of functions declared in MREFFUNCS_DECLARE; #include’d in the 
MRefEntity.cpp files. CLASS argument is used to qualify the function definition, e.g. 
CLASS::class_name().  Definitions differ from those in MREFFUNCS_DEFINE1 because they call 
the functions through the return value of ref_entity() instead of calling them directly (this is done 
because MRefEntity is not a direct descendent of RefEntity). 

In addition to including these macros in the MRefXxx.hpp and MRefXxx.cpp files, definitions are added 
for the functions in the MREFFUNCS_DIFFERENT_IMPLEMENTATIONS macro. 

Care should be taken when adding a function to those declared/defined in these macros, to make sure that 
both the definitions are added (to MREFFUNCS_DEFINE1 and MREFFUNCS_DEFINE2) as well as the 
declaration to MREFFUNCS_DECLARE.  It should be relatively rare that functions are added to these 
macros at all. 

When debugging these functions, the debugger will not be able to step into the functions defined in these 
macros.  However, if the “step into” debugger function is used, the debugger will step into the definition of 
the function in CGM, i.e. in RefEntity, CubitEntity, or wherever else it is defined. 

5.2 Library Initialization 
Because of the extensibility features built into CGM, and the extension of those classes by CUBIT, the 
initialization of CGM is a bit more complicated for CUBIT.  In particular, CUBIT must initialize 
MRefEntityFactory and CAFactory before creating or using GeometryModifyTool.  This is most easily 
done by calling MRefEntityFactory::instance() and CAFactory::create_factory before calling 
GeometryModifyTool::instance() for the first time.  Also, there are several tools which use mesh-defined 
geometry, in particular CompositeToolMesh and PartitionToolMesh; these classes are derived from the 
virtual geometry classes CompositeTool and PartitionTool, respectively, and also must be initialized before 
creating any virtual geometry.    The initialization of these tools is done in main(), before calling 
GeometryModifyTool::instance().  

The mechanics of how these CUBIT-specific tools are stored and used inside CGM varies a bit.  
MRefEntity, CompositeToolMesh and PartitionToolMesh are all derived from their respective parents who 
are singleton classes.  Singleton classes store a static pointer to the (single) instance of that class; the child 
classes simply create a child object and store a pointer to the child in the parent’s static pointer.  Thus, 
when the parent class’s instance() function is used, it returns the pointer to the child class.  CAFactory, and 
other classes derived from CubitAttribFactory, work slightly differently.  CubitAttrib keeps a static pointer 
to a CubitAttribFactory object; this pointer is initialized to NULL, but gets assigned inside 
CAFactory::create_factory to point to the CAFactory object.  This object is used from CubitAttrib if 
attributes unknown to CubitAttrib are encountered. 



5.3 Access To Geometric Model 
 

5.3.1 Global lists 
As stated earlier, pointers to global lists of entities are maintained in both RefEntityFactory and 
MRefEntityFactory.  Only one set of those pointers is non-NULL; in the case of CUBIT, the lists are non-
NULL in MRefEntityFactory.  Thus, global lists are stored and accessed from MRefEntityFactory; the 
functions for accessing global lists in RefEntityFactory (e.g. ref_faces(), ref_volumes()) are declared 
virtual, and are overridden in MRefEntityFactory. 

Although the global list access functions are declared public in MRefEntityFactory, in most cases these 
lists should be accessed through either Model or GeometryModifyTool.  In fact, for most of the code in 
CUBIT (i.e. the code outside CGM), these lists should be accessed through Model.  Model provides a 
common access point for most of the datastructure in CUBIT (geometry, mesh and boundary conditions).  
The functions in Model are declared with the same names as those in MRefEntityFactory, to minimize 
confusion.  Functions are provided for returning list copies (mref_faces, etc.), for returning a single entity 
of a given type (mref_face(), etc.), or for direct (but read-only) manipulation of the lists 
(get_first_mref_face(), get_next_mref_face(), get_last_mref_face(), etc.).  Similar functions are declared in 
GeometryQueryTool, for accessing global lists of RefXxx entities. 

In rare cases, efficiency concerns may be of such concern that direct access to the global lists is necessary.  
There are functions defined in MRefEntityFactory which return the pointers to the global entity lists, which 
can be used to modify the lists directly.  These functions should only be used when the functions in Model 
or GeometryQueryTool cannot be used, for efficiency or other reasons.  See the documentation for 
MRefEntityFactory for a description of these functions. 

5.3.2 Topological queries 
 
One of the most common types of geometry query in CUBIT is topological queries, e.g. return a list of 
edges bounding a face.  Since lists of entities do not derive from one another based on the inheritance 
hierarchy of the entities in the list, we need functions which return lists of MRefXxx objects  that are 
distinct from the corresponding topological query functions defined in TopologyEntity.  That is, we need 
functions like mref_edges(), mref_faces(), etc. that return lists of MRefEdge’s and MRefFace’s, 
respectively.  These functions are defined in MRefEntity, and so can be used with any object derived from 
MRefEntity. 

5.4 MRefEntity Construction/Destruction 
Because of the extensibility features of CGM and the use of factories to construct geometric entities, the 
implementation of the MRefEntity constructors and destructors can be rather complicated.  This section 
describes these implementations in more detail. 

5.4.1 Construction 
The constructors of the RefXxx classes are all private.  This is to prevent any code from constructing 
RefXxx objects without going through the RefEntityFactory.  This ensures that any code in CGM 
requesting a new RefXxx object will actually get an application-specific RefXxx object (e.g. MRefXxx 
object in CUBIT) in return.  Constructors in the MRefXxx classes are private for the same reason.  Because 
all these constructors are private, the RefXxx and MRefXxx classes declare RefEntityFactory and 
MRefEntityFactory, respectively, as friend classes; this allows the factory classes to call those private 
constructors. 

Tools needing to construct new geometric entities must therefore call functions in the appropriate factory 
class.  For example, RefEntityFactory::construct_RefEdge(Curve *) constructs and returns a RefEdge given 



a Curve pointer, while MRefEntityFactory::construct_MRefEdge(Curve *) constructs an MRefEdge and 
returns a pointer to an MRefEdge. 

 
GeometryTool :: delete_Body(Body * thisbody):

- delete solid model entities on thisbody and all l ower order geometry
- call thisbody->ModelEntity::remove_from_DAG():
  - for all children (lower order geometry):
    - remove thisbody from child's parent list
    - call child->remove_from_DAG()
    - if successful, add child to deactivated list
    - notify observers of child that child is delet ed
  - (end for)
  - add thisbody to deactivated list
  - notify thisbody observers that thisbody is dele ted
  - call GeometryTool::cleanout_deactivated_geometr y()
- (end ModelEntity::remove_from_DAG())

GeometryTool::cleanout_deactivated_geometry():

- call DAG::cleanout_deactivated_DAG_nodes():
  - for each deactivated DAG node:
    - delete deactivated DAG node; in DAG node dest ructor:
      - set CDO backpointer to DAG node to NULL
      - delete CDO; in CDO destructors (CDO is a Mo delEntity, which is a parent
        of all the geometric entities):

- if CDODAGNodePtr is not NULL, set to NULL and delet e
          (this should never happen!)

      - (end CDO destructors)
    - (end DAG node destructor)

 

Figure 2: Pseudo code for deleting geometric entities. 

5.4.2 Destruction 
Destruction of geometric entities in CUBIT was quite complicated before CGM, and remains so.  At the 
highest level, the GeometryQueryTool::delete_Body(Body *) function should be used to delete bodies.  
This function implements the logic necessary to delete the body, the solid model entities represented by the 
body, and any mesh that may exist on the body that isn’t shared by geometric entities not being deleted. 

Unfortunately, it is often necessary to understand what is happening during the entity deletion process.  
Pseudo code for this process, as implemented when this manual was written, is shown in Figure 2.  The 
most important thing to derive from this information is that the destructors for the geometric entities are 
called directly from CDODAGNODE::~CDODAGNODE(). 

5.4.3 Construction/Destruction and Multiple Inheritance 
By definition, when a class object inherits from multiple base classes, the base class constructors are called 
before that of the child class, in the order in which they appear in the child class declaration.  Destructors 
are called in reverse order.  As implemented in CUBIT, the MRefXxx classes inherit from RefXxx first, 
then from MRefEntity.  This has important implications on what happens in the MRefXxx and MRefEnity 
constructors and destructors. 

The primary thing to remember about constructors is that during the construction of an MRefXxx object, 
inside the MRefEntity constructor, the object does not yet know that it is also a RefEntity.  This is because 
the leaf class, MRefXxx, which is the link between the two sets of parent classes, has not yet been 
constructed.  So, if inside the MRefEntity constructor, an attempt is made to call ref_entity(), e.g. for the 



purpose of traversing the topology, that function will return NULL.  Thus, any work that needs to be done 
in the constructor that requires topology traversal should be done in the leaf classes, not in MRefEntity.  

Likewise, during the destruction process, the leaf class MRefXxx is destroyed before calling the 
MRefEntity destructor.  Any call to ref_entity() inside the MRefEntity destructor will also return NULL.  
Therefore, any destruction-related code which requires topology traversal should be called from the 
MRefXxx destructors.  For example, this requires that CubitObservable::remove_from_observers() be 
called from the MRefXxx destructors, since observers sometimes perform topology traversal from the 
entity they are un-observing. 

5.5 Observer Notification 
In order to remove dependency of CGM on CUBIT classes like DrawingTool and Model, while still being 
able to notify those classes of changes to the geometry, a general observer mechanism was implemented.  
Using this mechanism, objects derived from CubitObserver can “observe” objects derived from 
CubitObservable, and can be notified when these objects are modified or destroyed.  The observer 
mechanism works by keeping, for every observable, a list of observers which get notified upon changes to 
the observable.  Although this same mechanism could be used to implement the observation of entities by 
DrawingTool and Model, this would be inefficient, since most mesh and geometry entities would keep 
pointers to these classes.  Instead, a static observer mechanism was also implemented, where certain classes 
can register themselves to observe all events from all observables. 

5.5.1 Static observers 
Static observers register themselves by calling CubitObserver::register_static_observer(CubitObserver*).  
A pointer to each static observer is kept on a static observer list in CubitObserver (actually, CubitObserver 
just points to that list, creating it from CubitApp::instance() upon startup).  Typically, static observers are 
also singleton classes, which means they can be registered inside either the constructor or the part of the 
instance() function which calls the constructor (the latter method is used when there may be child classes 
derived from those singleton classes, to avoid the same object being registered twice).  The current static 
observers in CUBIT are DrawingTool and Model. 

Static observers are notified of events by calling CubitObserver::notify_static_observers(EventType). 

5.5.2 Construction 
When entities are constructed, several things are done at the global level.  The entity must be added to 
global lists, and if graphics are active, the entity is added to the graphics display list.  In CUBIT, there are 
specific events which accomplish these and other things; these events are listed in Table 33.   

Note that notify_static_observers(MODEL_ENTITY_CONSTRUCTED) is called from both the MRefXxx 
and RefXxx constructors.  The implementation of this notify function is done carefully, to avoid adding a 
given entity to the global lists twice.  This is accomplished in the following way.  First, inside the 
Model::notify_observer function, the CubitObservable argument is cast to an MRefEntity; if that cast is 
successful, the Model::notify(MRefEntity*, EventType) function is called with that entity as an argument.  
If the result of the cast is NULL, the Model::notify_observer function returns without doing anything 
further.  During the construction of an MRefXxx object, CubitObserver::notify_static_observers gets called 
twice, once from the RefXxx::RefXxx constructor, and once from MRefXxx::MRefXxx.  The first call 
does nothing, while the second call results in the entity being added to the global entity list. 

Table 33: Events passed to CubitObserver::notify_static_observers(EventType) from various 
functions in CUBIT. 

• Event • Called from… • Action 
• VGI_BODY_CONSTRUCTED • GeometryModifyTool::

make_Body 
• Adds Body and its 

descendents to graphics 
display lists 



• FREE_REF_ENTITY_CONSTRUCTE
D 

• GeometryModifyTool::
make_Xxx 

• (Xxx = Face, Edge, 
Vertex) 

• Adds entity (Face, 
Edge, etc.) to graphics, 
then calls 
DrawingTool::make_to
pmost for that entity 

• MODEL_ENTITY_CONSTRUCTED • MRefXxx::MRefXxx, 
• RefXxx::RefXxx 
• (constructors) 

• Adds entity to global 
entity list 

 
 

5.5.3 Destruction 
When an entity is destructed, its observers must be notified so that they can take the proper actions prior to 
that entity being removed.  For example, when an entity which is contained in a group is destroyed, that 
entity must be removed from the group.  Also, static observers should be notified of the entity being 
destroyed.  Inside each MRefXxx::~MRefXxx function are calls to 
CubitObservable::remove_from_observers() and CubitObserver::notify_static_observers(this, 
MODEL_ENTITY_DESTRUCTED).  The first function removes the observable from any observers that 
are observing it, while the second notifies static observers that the entity is about to be destroyed.  The 
RefXxx::~RefXxx destructors do not need to call remove_from_observers(), since this function is called 
from CubitObservable::~CubitObservable().  This function must be called in the MRefXxx destructors 
because some observers need to know that the observable is an MRefEntity.  If the 
remove_from_observers() function was not called in the leaf class destructors, by the time the function was 
called in the CubitObservable destructor the link between MRefEntity and RefEntity would be lost. 

5.6 Attributes 
There are three types of attributes implemented by CUBIT: mesh-specific attributes, entity names, and 
CUBIT owner attributes.  The first two types of attributes are implemented as application-specific attributes 
using the techniques described in Section 4.3.  CUBIT owner attributes are implemented outside the 
general attribute mechanism. 

Documentation for the various mesh-specific attributes is found in a separate document.  Entity names and 
CUBIT owner attributes are described below. 

5.6.1 Entity Name 
Although the Entity Name attribute is implemented using the general attributes capability in CGM, there 
are a few things that are done for entity names that diverge from a typical attribute.  These differences are: 

• Entity names are written back onto a solid model entity after being read from that entity, and after each 
change to the entity name on a RefEntity object.  This is done to facilitate name persistence through 
booleans.  This is implemented in RefEntityName::add_refentity_name, by calling 
CAEntityName::update after adding the entity name. 

• In the case where default names are used, the entity names are not immediately written back to the 
solid model entities, since these names are not meant to persist across boolean operations. 

5.6.2 CUBIT owner 
The CUBIT owner attribute is used during the CUBIT session, to relate ACIS objects to their 
corresponding CGM objects.  The data in the CUBIT owner attribute consists of a pointer to an AcisBridge 
object, from which a pointer to the corresponding TopologyEntity (and RefEntity) object can be found.  
Although the CUBIT owner attribute is stored in the ACIS .sat file, it is meaningless outside an active 
CUBIT session. 



Besides its use when geometry is not changing (to complete the bi-directional link between 
TopologyBridge and ACIS objects), the CUBIT owner attribute is also used to implement persistent objects 
in CUBIT.  In this mechanism, the CUBIT owner attribute pointers are used to determine which CUBIT 
entities correspond to ACIS entities which survive boolean operations, and which ones did not (and 
therefore should be deleted).  Ultimately, the CUBIT owner attribute will be used to determine when the 
data in any other CUBIT attribute should be updated, for example to detect when the size of a geometric 
entity changes. 

6 Summary and Conclusions 
This report shows how to use CGM to construct geometry applications (User’s Guide) and how to extend 
CGM to provide enhanced functionality on top of the geometry classes (Developer’s Guide).  CGM has 
been used in both ways in various applications at Sandia National Laboratories. 

Several improvements have been made to CGM recently which are not described in this report.  Those 
include distributing geometric models on parallel computers [1], porting CGM to various other solid 
modeling engines (including SolidWorks and Granite), and implementation of a common interface to 
geometry based on CGM.  Please contact the author if additional information is needed about these items. 

7 References 
[1] ACIS 3D Toolkit, http://www.spatial.com/Products/Toolkit/toolkit.htm. 
[2] S. J. Owen, D. R. White, T. J. Tautges, “Facet Based Surfaces for 3D Mesh Generation”, Proc. 11th Int. 

Meshing Roundtable, Sandia National Laboratories, Albuquerque, New Mexico, September 2002. 
[3] “SolidWorks API”, SolidWorks Corp., http://www.solidworks.com/html/Products/api/. 
[4] “Application Programming Toolkit”, PTC, Inc, http://www.ptc.com/products/proe/app_toolkit.htm. 
[5] Jason Kraftcheck, “Virtual Geometry: A Mechanism for Modification of CAD Model Topology For Improved 

Meshability”,  Master’s Thesis, University of Wisconsin-Madison, December, 2000. 
[6] T. D. Blacker et al., ‘CUBIT mesh generation environment, Vol. 1: User’s manual’, SAND94-1100, Sandia 

National Laboratories, Albuquerque, New Mexico, May 1994, http://endo.sandia.gov/cubit/release/doc-
public/Cubit_UG-4.0.pdf 

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software”, 
Addison-Wesley, 1995. 

[8] Timothy J. Tautges, Hong-Jun Kim, “On the Partitioning and Initialization of Solid Geometry Models on Parallel 
Computers”, 8th International Conference on Numerical Grid Generation in Computational Field Simulations, 
Honolulu, HA, June 2002. 

Appendix A CGM Licensing 
CGM will be released under an LGPL license; see http://cubit.sandia.gov/CGM for details.  However, the 
LGPL-released version of CGM will not contain the ACIS modeling engine code, because of restrictions of 
the ACIS license.  To obtain this code, institutions must themselves be licensed to use ACIS.  Once this 
license is verified by Sandia, the CGM code calling ACIS functions can be obtained.  Please contact cubit-
dev@sandia.gov for details.  CGM can be built and used without the ACIS functionality, for example using 
the facet-based modeling capability. 



Appendix B CGM, CUBIT Class Diagrams 
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Figure 3: Class hierarchy for CGM geometry query and modify tools and engines.  These classes are 
stored in CUBIT_BASE_DIR/geom subdirectory. 



 

Topology Entities 

ModelEntity 

BasicTopologyEntity SenseEntity 

TopologyEntity 

GroupingEntity 

CubitAttribUser 

RefEntity 

ToolDataUser 

RefVertex 

RefEdge 

RefFace 

RefVolume 

Chain 

Loop 

Shell 

Body 

CoVertex 

CoEdge 

CoFace 

CoVolume 

BridgeManager 

(TopologyBridge) 

 

Figure 4: Class hierarchy for CGM topology entity classes.  These classes are stored in 
CUBIT_BASE_DIR/geom subdirectory. 
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Figure 5: Class hierarchy for CGM geometry classes. These classes are stored in 
CUBIT_BASE_DIR/geom subdirectory. 



 

PRO/E 

(…) 

PointACIS CurveACIS LumpACIS SurfaceACIS 

ShellACIS BodyACIS LoopACIS CoEdgeACIS 

AcisBridge (xxxSM) 

AcisQueryEngine 

(GeometryQueryEngine) 

ACIS 

Virtual  

AcisModifyEngine 

(GeometryModifyEngine) 

 

Figure 6: Class hierarchy for CGM geometry representation classes.   These classes are stored in 
CUBIT_BASE_DIR/geom subdirectory. 
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Figure 7: Class hierarchy for CUBIT factory and entity classes.  These classes stored in 
CUBIT_BASE_DIR directory. 
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